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Abstract

Inflation targeting is strictly suboptimal when economic actors have in-

complete information about the state of the economy. Nominal income

targeting is approximately optimal, and exactly optimal under certain pa-

rameterizations. We derive this result in a “Lucas islands” monetary mis-

perceptions model built from, unlike prior work, explicit microfoundations.

Agents have knowledge of local productivity and money supply conditions,

but must perform a signal extraction problem each period to estimate the

aggregate productivity shock and the aggregate money supply shock. With-

out full information, agents cannot perfectly distinguish between relative

price shocks and aggregate shocks, causing monetary policy to affect the

real economy. Since the model is built from agents optimizing from first

principles, we are able to take a second-order welfare approximation and

ask what monetary policy rule is optimal. In contrast to sticky price or

sticky information models, inflation and price level targeting are always

suboptimal, as price level variation provides useful information to agents.

Under log utility, nominal income targeting is optimal.

∗basilhalperin@uchicago.edu
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1 Introduction

What should a central bank do? Most central banks, at least in developed nations,

target a low and stable rate of inflation. This conception of inflation targeting as

the optimal monetary policy target can be justified by the workhorse model of

modern monetary economics, the sticky price general equilibrium (“New Keyne-

sian”) model. In this model, optimal monetary policy is to target a zero rate of

inflation, which happens to simultaneously prevent both recessions and unsustain-

able booms. Similarly, the popular “sticky information” model prescribes price

level targeting as optimal monetary policy, a related policy. The optimality of in-

flation and price level targeting in these models is a result of the specific frictions

in these model (sticky prices and sticky information, respectively).

This paper shows that the optimality of inflation targeting is not robust to the

choice of friction. In our model, agents have incomplete information about the

state of the economy. In particular, agents are able to observe local money sup-

ply, money demand, and productivity, but must estimate the level of the aggregate

money supply, aggregate money demand, and aggregate productivity. Under these

conditions, inflation or price level targeting is actively harmful: by being unneces-

sarily active in stabilizing the price level, central banks mute valuable information

contained in the inflation which results from aggregate productivity shocks.

Optimal policy is instead approximately nominal income targeting, and under

certain parameterizations is precisely nominal income targeting. More generally,

the central bank should allow the price level to fall in response to technological

innovations, and conversely allow the price level to rise in response to negative pro-

ductivity shocks. The aggregate price level thus acts as a coordination mechanism,

analogous to the way that relative prices convey useful information to agents about

the relative scarcity of different goods. For example, when productivity falls and

aggregate output is more scarce, the aggregate price level signals this by rising.
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We establish this result in a “Lucas Islands” model. One contribution of this

paper is to revive the Lucas islands model and to fully ground it in a modern op-

timizing framework. Whereas previous work (Lucas (1972); Lucas (1973); Barro

(1976); McCallum (1984)) simply postulated some of the basic economic rela-

tionships of the model, we start from heterogeneous agents optimizing to maxi-

mize their expected utilities, with money demand resulting from a cash-in-advance

(CIA) constraint.

Lucas described a world composed of many isolated islands with each island

producing a different good. Agents on any given island are aware of economic con-

ditions on their specific island, but are unaware of aggregate economic conditions.

As a result of the isolation of islands, if the central bank boosts the aggregate

money supply across all islands, any individual agent may misperceive the resulting

increase in nominal spending as an increase in real demand for their island’s specific

good, rather than merely a nominal change, causing them to increase production.

In this way, nominal variables can affect real variables.

Lucas’ model was meant to capture the very realistic problem of information

frictions. Consider the owner of an isolated bakery. Suppose one day, all of the

customers seen by the baker spend twice as much money as the customers from

the day before. The baker has two options. She can interpret this increased

demand as customers having come to appreciate the superior quality of her baked

goods, and increase her production to match the new demand. Alternatively,

she could interpret this increased spending as evidence that there is simply more

money in the economy as a whole, and that she should merely increase her prices

proportionally to account for inflation. Economic agents confounding these two

effects is the source of economic booms and busts, according to this logic. On the

other hand, if the central bank had announced that the money supply had been

doubled yesterday, the baker could have fully anticipated the new spending and
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raised prices appropriately.

Using this framework, we solve for “full information” output, that is, the nat-

ural rate of output which would occur in the absence of any information frictions.

Because the model is fully microfounded from optimizing agents, we are then able

to take a second degree approximation of the agents’ utility functions to get a

measure of welfare in the style of Woodford (2002) (see also Ball et al. (2005);

Ravenna and Walsh (2003)), which turns out to be a function of the squared dif-

ference between actual output and full information output. This allows us to ask

what monetary policy rule is welfare-optimal, as outlined above.

In the reasonable case that aggregate technology shocks have a unit root – that

is, if an invention is made today, it is not forgotten immediately tomorrow or slowly

forgotten over time – then optimal policy approaches nominal income (NGDP)

targeting as information approaches completeness. Nominal income targeting is

also exactly optimal if agents have log preferences over consumption.

In the more general case where technology shocks follow a first-order Markov

process, optimal monetary policy does not merely target a constant inflation rate

or price level, but instead is more flexible. In other words, the strict inflation

targeting pursued by some real-world central banks is rejected.

This paper proceeds as follows. The second brief section runs through the set-

up of a standard cash-in-advance model without capital or credit and linearizes

it around the steady state, and the third section incorporates the monetary mis-

perceptions friction into this model. The fourth section defines full-information

output, and the fifth section derives a second-order welfare approximation using

this definition. The sixth section discusses the recursive laws of motion, and the

seventh section uses this system and the welfare approximation to solve for optimal

monetary policy. An eighth section extends the model by allowing for variation in

velocity. A discussion of optimal policy and conclusion follow.
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2 Model core: A CIA model

The core of the model is a simple cash-in-advance model of Lucas and Stokey

(1987) without capital. The economy is a purely cash economy; there is no credit.

Because these results are standard, available in any textbook (e.g. Walsh (2010)),

and not a contribution of this paper, we present most results without derivation.

We begin by discussing a representative household and later add the heterogeneity.

The representative household maximizes utility, which is increasing in con-

sumption of the single consumption good ct and decreasing in labor nt.

max
{ct+i,nt+i,mt+i,bt+i}∞i=0

Et

[
∞∑
i=0

1

1− σ
c1−σ
t+i −

χ

1− η
n1+η
t+i

]
(1)

The household faces the CIA constraint ptct ≤Mt−1 + Tt, where pt is the nominal

price of the consumption good, Mt−1 is the supply of money carried over from

the previous period, and Tt is the nominal money supply transfer from the central

bank. Defining real variables mt−1 = Mt−1

pt−1
, τt = Tt

pt
and inflation πt = pt−pt−1

pt−1
, then

this constraint can be written in real terms as

ct ≤
mt−1

1 + πt
+ τt (2)

The household allocates wealth today among consumption, savings in the form of

bonds Bt, and money Mt for next period. Wealth today consists of income yt,

interest income from the interest rate it−1 on last period’s savings, money carried

over from last period, and the central bank’s money supply transfer today. In real

terms, where bt = Bt
pt

, the budget constraint can be written as

ct + bt +mt ≤ yt +

(
1 + it−1

1 + πt

)
bt−1 +

mt−1

1 + πt
+ τt (3)

Finally, the production function is linear in labor, with stochastic technology shock
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term at.

yt = atnt (4)

The household maximizes (1) subject to (2)-(4). Denoting the Lagrangian mul-

tipliers on the budget constraint and the CIA constraint λt and µt respectively, it is

straightforward to show using a Bellman equation that the equilibrium conditions

are as follows:

c−σt = λt + µt (5)

χnηt = λt
yt
nt

(6)

λt = βEt

[
λt+1 + µt+1

1 + πt+1

]
(7)

λt = βEt

[
λt+1

1 + it
1 + πt+1

]
(8)

The first equation shows that the household equates the marginal utility of

consumption to the marginal utility of wealth (λt) plus a wedge induced by the CIA

constraint (µt). The second equation is the marginal rate of substitution condition.

The third equation implicitly defines money demand. The fourth equation is the

consumption Euler equation.

Market clearing implies ct = yt and Tt = Mt −Mt−1.

Appendix A log linearizes this model around the steady state. Define the

percentage deviation of variable x from its steady state value xss as x̂t = xt
xss
− 1.

We apply this to all variables excepting interest rates and inflation, which are

already percentages, where we instead define ît = it− iss, π̂t = πt− πss. Appendix

A derives that:

ŷt = n̂t + ât (9)

ŷt = ĉt = M̂t − p̂t (10)
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λ̂t = Et [−σŷt+1 − π̂t+1] (11)

(1 + η)n̂t = ŷt + λ̂t (12)

λ̂t = Etλ̂t+1 + ît − Etπ̂t+1 (13)

Etµ̂t+1 = Etλ̂t+1 +
1− Φ

Φ
Etît (14)

(9) is the linearized production function. (10) follows from market clearing

and the result that in an equilibrium with positive nominal interest rates, the CIA

constraint binds. The marginal utility of wealth (11) is implied by (5), (7), and

market clearing. (12) is the linearized MRS condition, and (13) is the linearized

Euler equation. (14) is the result of combining (7) and (8), where Φ ≡ 1− β
1+πss

=

iss

1+iss
measures steady-state deviation from the Friedman rule (Φ = 0 implies the

Friedman rule is implemented).

3 Incorporating monetary misperceptions

Thus far, the model presented is entirely classical. We now add the imperfect

information friction that will generate monetary misperceptions.

There is a population of agents who each live on separate islands, and only

have knowledge about economic conditions on their local island. Agent i lives in

a cash-in-advance economy on her respective island i and produces differentiated

output yit. To make money demand stochastic, agents are randomly reallocated

among islands after each period. Agents are equally likely to be distributed to any

particular island.1 As a result, when agents optimize, they care about local eco-

nomic conditions for date t variables, but care about aggregate economic conditions

for date t+ 1 variables.

1In the original formulation of Lucas, agents had two-period lives, and young agents were
distributed randomly to each location. My infinitely-lived framework makes welfare analysis
more tractable. See also (Walsh, 2010).
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We denote local variables with a superscript i, and aggregate variables without

a superscript. Our linear system of (9)-(14), which represented the classical CIA

model, is thus transformed into the Lucas islands model as follows:

ŷit = n̂it + ât + ℵ̂it (15)

ŷit = M̂ i
t − p̂it (16)

λ̂it = Et [−σŷt+1 − π̂t+1] (17)

(1 + η)n̂it = ŷit + λ̂it (18)

λ̂it = Etλ̂t+1 + îit − Etπ̂t+1 (19)

Etµ̂t+1 = Etλ̂t+1 +
1− Φ

Φ
îit (20)

3.1 Misperceptions on productivity shocks

Note that the local production function (15) is now yit = atℵitnit. That is, each

good in the economy experiences an aggregate productivity shock at as well as

an idiosyncratic productivity shock ℵit. We impose that idiosyncratic productivity

shocks are serially uncorrelated white noise with variance σ2
ℵ and which average

to zero across islands. Further, aggregate productivity shocks follow a first-order

Markov chain process: where εat ∼ N(0, σ2
a) is white noise,

ât = ρaât−1 + εat (21)

Agents have incomplete information, and cannot distinguish between local pro-

ductivity shocks and aggregate productivity shocks. That is, since an agent on is-

land i can observe local output ŷit, they can infer
(
ât + ℵ̂it

)
, but not the individual

components separately. This will be very important.

We suppose agents have rational expectations, with the underlying parameters
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of the economy known.2 Agents then estimate the aggregate productivity shock

using the linear least-squares estimator:

Ei
t ât = ω

(
ât + ℵ̂it

)
(22)

where ω = σ2
a/(σ

2
a + σ2

ℵ). Note that 0 ≤ ω ≤ 1, and if aggregate productivity

shocks are large compared to local productivity shocks, agents will attribute more

of the combined productivity shock to the aggregate ât. Vice versa, if idiosyncratic

productivity shocks are large, then ω will be close to zero.

3.2 Misperceptions on money supply shocks

We have yet to specify a monetary policy rule for how the central bank will set the

nominal money supply. We suppose a rule of the following form for the aggregate

money supply:

M̂t = ρmM̂t−1 + vt + ut + φât (23)

Here, φ is the response of the central bank to productivity shocks. vt and ut are

both serially uncorrelated white noise money supply shocks. What distinguishes

them is that vt is public information whereas ut is not. In other other words, vt is

known to agents, but agents will have to estimate ut just as they have to estimate

at. This estimation is detailed further momentarily.

The nominal money supply on island i follows:

M̂ i
t = ρmM̂t−1 + vt + ut + uit + φât + φiℵ̂it (24)

Here, φi is the response of the central bank to idiosyncratic local productivity

shocks. uit is an island-specific money supply shock. Like ut, it is not public

information. Like ℵ̂it, we suppose that it is white noise which averages to zero.

2Incorporating how agents learn these parameters over time could be a very fruitful extension
of this framework.
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As a result, agents on island i must perform a signal extraction problem when

estimating the value of ut, analogous to the same problem faced with estimating

ât. Denoting the variances of ut and uit as σ2
u and σ2

i , respectively, then:

Ei
tut = κ(ut + uit) (25)

where κ = σ2
u/(σ

2
u+σ2

i ). The same interpretation applies as with the least-squares

estimator for the aggregate productivity shock.

3.3 Summing up

The system representing the Lucas islands model consists of equations (15)-(25).

In a subsequent section, we will derive expressions for the price level and output

as a function of the state variables (M̂t−1, ât) and exogenous shocks (vt, ut, u
i
t, ℵ̂it).

We first discuss what the behavior of output would be in the absence of the infor-

mation frictions, since this will make the expressions for the price level and output

exceedingly more intuitive.

4 Unconstrained full-information output

Define “unconstrained, full-information” output as the level of output which would

prevail in the absence of both the CIA constraint and the Lucas island information

friction. That is, the unconstrained full-information output level is the level of

output which would prevail in the most basic real business cycle model. Denote

the aggregate level of unconstrained, full-information output as ŷft and island i’s

unconstrained, full-information output level as ŷi,ft .

Appendix B solves for this level of output by equating the marginal rate of

substitution (in the absence of the CIA constraint) to the marginal productivity
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of labor. The result is:

ŷi,ft =
1 + η

σ + η

[
ât + ℵ̂it

]
(26)

ŷft =
1 + η

σ + η
ât (27)

That is, the unconstrained, full-information level of output at time t is directly

proportional to the productivity shock of time t.

5 The welfare approximation

Following Woodford (2002), we take a second order approximation of the utility

function to get a tractable representation of welfare of agents in the economy. We

can then ask what type of monetary policy rule maximizes this welfare approxi-

mation.

Define the deviation of utility from steady state as

U i
t−U i,ss ≡ U(cit, n

i
t)−U(ci,ss, ni,ss) = 1

1−σ

(
cit

1−σ − ci,sst

1−σ
)
− χ

1+η

(
nit

1+η − ni,sst

1+η
)

Appendix C shows, after much tedious algebra, that this has the second-order ap-

proximation of

ξ
[
U i
t − U i,ss

]
= −1

2

[
ŷit − ŷ

i,f
t

]2

+ t.i.p. (28)

where t.i.p. is “terms independent of monetary policy”, that is, terms which cannot

be affected by monetary policy. ξ is a constant.

Period utility thus is solely a function of the deviation of output from its

unconstrained, full-information level. Any deviation – up or down – is welfare-

reducing.

It is worthwhile to note what does not show up in this approximation. Note

that the variance of the price level does not appear. That is, the agent has no

instrumental reason to care about price variability (i.e. inflation), except inasmuch
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it causes output to deviate from its “natural” unconstrained level.

This is contrast to many similar papers which also take a second-order ap-

proximation of the utility function and ask what monetary policy rule is welfare-

maximizing (e.g. Woodford (2002); Ravenna and Walsh (2003); Ball et al. (2005)).

This is because these models are built on top of a monopolistic competition foun-

dation, where agents consume a composite consumption good, typically of Dixit-

Stiglitz form ct =
[∫ 1

0
c

1/θ
it di

]θ
. Agents have a “taste for variety”, as different

goods cit and cjt are complements for one another. Cross-sectional price disper-

sion distorts the relative prices of these differentiated goods, causing the agent to

consume amounts of the individual goods which differ from the optimum flex-price

quantity. Because of diminishing marginal utility, this lowers welfare. Thus, the

second-order welfare approximation includes a term for the cross-sectional variance

of inflation.

This does not appear here. Each island’s output yit could itself be a composite

good, yit =
[∫ 1

0
yit(j)

1/θdj
]θ

, but without any friction to distort the composition

of this composite (e.g. the Calvo sticky price friction so popular in the models

cited above), this complication would have precisely zero affect on welfare. A

more promising approach may be the incorporation of the state-dependent Ss

pricing model of Gertler and Leahy (2008). This model features separated islands

with each island containing a continuum of monopolistically competitive firms,

with state-dependent sticky prices resulting from idiosyncratic productivity shocks

interacting with fixed adjustment costs.

6 The recursive laws of motion

We now return to the equilibrium conditions of the model (15)-(25). With full-

information output and the welfare approximation established to provide intuition

12



for what we are about to see, we are now able to examine the recursive laws of

motion for the price level and output.

Appendix D uses the method of undetermined coefficients to prove that the

price level can be written as a function of state variables M̂t−1, ât and exogenous

shocks vt, ut, u
i
t, ℵ̂it. It shows that

p̂it = ρmM̂t−1 + vt +
η + κ

η + 1

(
ut + uit

)
+ a5ât + a6ℵ̂it (29)

and thus

ŷit = M̂ i
t − p̂it =

[
1− κ
η + 1

]
(ut + uit) + (φ− a5)ât + (φi − a6)ℵ̂it (30)

where

a5 = − η+1
η+1+(σ−1)ωρa

+ φη+ω+(σ−1)ωρa
η+1+(σ−1)ωρa

a6 = −1 + η
η+1

φi + φω+(σ−1)ωρa
η+1

− σ−1
η+1

ωρaa5

The coefficients in (29) and (30) have intuitive explanations. Note first that the

price level, (29), adjusts one-for-one with predictable or announced money supply

changes: the coefficients on ρmM̂t−1 and vt are both unity. As a result, anticipated

money supply shocks have no effect on output in (30).

In contrast, money supply shocks do affect output if they are unannounced

and there is incomplete information (κ < 1). That is, unannounced money supply

shocks, ut+uit, affect output, and with a larger effect the smaller that κ is. Agents

are unable to completely distinguish between purely nominal inflationary shocks

and relative price movements. To walk through an example, suppose an agent

on island i sees the price of local consumption good cit increase. They will not

be able to perfectly accurately tell if this price increase indicates higher relative

demand for their output, or if instead it is merely a nominal price increase of no

real significance.

Interpreting the relationship between the price level and productivity shocks is
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slightly more complicated. It is useful to discuss an edge case to build intuition.

Suppose that aggregate productivity follows a random walk (ρa = 1), and that

agents have perfect information (ω = 1). In this case, a5 = − 1+η
σ+η

+φ. As a5 is the

coefficient on aggregate productivity in the equation for the price level, this means

that the price level adjusts negative one-for-one with potential aggregate output

(recall ŷft = 1+η
σ+η

ât) distorted by however much the monetary authority responds

to supply shocks, φ.

From (29) and (30), it follows immediately that the aggregate price level and

aggregate output are

p̂t = ρmM̂t−1 + vt +
η + κ

η + 1
ut + a5ât (31)

ŷt = M̂t − p̂t =
1− κ
η + 1

ut + (φ− a5)ât (32)

We turn next to the question of, what monetary policy rule should the central

bank follow in order to maximize welfare? Put in more mathematical terms: what

are the optimal coefficients φ and φi, and what are the optimal time-paths for

vt, ut, and uit?

7 Optimal monetary policy

7.1 Optimal monetary policy shocks

Trivially, the optimal monetary policy rule will not engage in unanticipated shocks

to the money supply: i.e., the central bank should set ut = uit = 0 for all t.

Unanticipated money shocks only create noise and are welfare-reducing.

On the other hand, pre-announced monetary policy changes vt do not affect

local or aggregate output no matter what. As a result, announced monetary policy

changes can be as noisy as the central banker wants, without impacting welfare.
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However, one can envision that this result would not hold were only the smallest

adjustment costs added to this framework. In other words, although this model

implies that optimal policy allows for any monetary policy rule as long as it is pre-

announced (imagine, as a clearly absurd example, a k-percent rule for the money

supply where k is determined by the month of the year) there are good reasons

outside of this model to think that that unnecessary pre-announced monetary

changes should be kept to a minimum.

7.2 Optimal response to supply shocks

Optimal policy becomes interesting when the central bank must answer the ques-

tion of how to respond to supply shocks: what are the optimal productivity re-

sponse coefficients φ and φi?

The central bank seeks to maximize aggregate welfare,
∫
i
[U i

t − U i,ss] di. We

discussed previously the result that individual welfare can be approximated as

ξ [U i
t − U i,ss] = −1

2

[
ŷit − ŷ

i,f
t

]2

+ t.i.p., where t.i.p. is “terms independent of mon-

etary policy”, i.e. terms not affected by the central bank. We can use this result

to get an expression for aggregate welfare.

Differencing the expressions for ŷit and ŷt from (30) and (32), we find that

ŷit = ŷt + 1−κ
1+η

uit + (φi− a6)ℵ̂it. Similarly differencing the expressions for ŷi,ft and ŷft

from (26) and (27), we find that ŷi,ft = ŷft + 1+η
σ+η
ℵ̂it. Thus

ŷit − ŷ
i,f
t = ŷt − ŷft +

1− κ
1 + η

uit + (φi − a6)ℵ̂it −
1 + η

σ + η
ℵ̂it

Then, turning off money supply shocks since we know these are suboptimal,[
ŷit − ŷ

i,f
t

]2

=
[
ŷt − ŷft

]2

+ 2
(
ŷt − ŷft

)(
φi − a6 − 1+η

σ+η

)
ℵ̂it +

(
φi − a6 − 1+η

σ+η

)2

ℵ̂i2t
Integrating over i, we find an expression for aggregate welfare in terms of aggregate

output, aggregate full-information unconstrained output, and terms independent
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of policy:

ξ

∫
i

[
U i
t − U i,ss

]
di =

∫
i

{
−1

2

[
ŷit − ŷ

i,f
t

]2

+ t.i.p

}
=

∫
i

[
ŷt − ŷft

]2

di+ 2
(
ŷt − ŷft

)(
φi − a6 −

1 + η

σ + η

)∫
i

ℵ̂itdi

+

(
φi − a6 −

1 + η

σ + η

)2 ∫
i

ℵ̂i2t di

=

∫
i

[
ŷt − ŷft

]2

di+

(
φi − a6 −

1 + η

σ + η

)2 ∫
i

ℵ̂i2t di (33)

Where the last line follows from the fact that idiosyncratic productivity shocks

average to zero across islands.

It is possible for the central bank to replicate the unconstrained, full-information

equilibrium by its choice of φ and φi. This will result in aggregate welfare’s devi-

ation from steady state, as specified in the above equation, always being exactly

zero.

First, the first term in (33), the deviation of aggregate output from its natural

level, can be zeroed by an appropriate choice of φ. From (32) and (27), the optimal

central bank response to productivity shocks φ∗ will satisfy

φ∗ − a5 −
1 + η

σ + η
= 0

=⇒φ∗ =
1 + η

σ + η

η + 1 + (σ − 1)ωρa
1− ω

− 1 + η

1− ω
(34)

Second, given φ, then φi can be chosen to zero the second term of (33):

φi
∗

= a6 +
1 + η

σ + η

=⇒φi∗ = (η + 1)

{
−η − 1 + (ω − 1)ρa(σ − 1)

η + 1 + (σ − 1)ρa

+
1 + η

σ + η

[
ω + (σ − 1)ωρa

η + 1
− σ − 1

η + 1
ωρa

η + ω + (σ − 1)ωρa
η + 1 + (σ − 1)ωρa

]
φ∗
}

Discussion is postponed to section 9. We first introduce velocity shocks.
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8 Introducing velocity shocks

Velocity shocks can be introduced by allowing the cash-in-advance constraint to

vary over time in its bindingness. Instead of equation (16), ŷit = M̂ i
t − p̂it, suppose

that there is exogenous velocity xt + xit:

ŷit = M̂ i
t − p̂it + x̂t + x̂it (35)

where, analogous to productivity shocks,

x̂t = ρxx̂t−1 + εxt (36)

and εxt ∼ N(0, σ2
x) is white noise. Idiosyncratic velocity shocks x̂it are uncorrelated

with other shocks, have variance σ2
xi , and average to zero across islands.

As with money supply and productivity, agents are only able to observe the sum

(x̂t + x̂it), but not the individual components. They rationally estimate aggregate

velocity as

Ei
t x̂t = γ

(
x̂t + x̂it

)
(37)

where γ = σ2
x/
(
σ2
x + σ2

xi

)
.

The money supply rule now allows the central bank to respond to velocity

shocks:

M̂t = ρmM̂t−1 + vt + ut + φât + ψx̂t (38)

M̂ i
t = ρmM̂t−1 + vt + ut + uit + φât + φiℵ̂it + ψx̂t + ψix̂it (39)

The refinement of variable velocity does not affect full-information uncon-

strained output or the welfare approximation, but the recursive laws of motion

for prices and output are altered. The expressions for price level and output, (31)

and (32), gain an additional term to account for the effect of velocity on prices
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and output, becoming:

p̂t = ρmM̂t−1 + vt +
η + κ

η + 1
ut + a5ât + a7x̂t (40)

ŷt = M̂t − p̂t =
1− κ
η + 1

ut + (φ− a5)ât + (1 + ψ − a7)x̂t (41)

where a5 is as defined before, and:

a7 = η+γσρx
η+γσρx−γρx+1

+ ψ η+γσρx−γρx+γ
η+γσρx−γρx+1

The addition of variable velocity does not affect optimal policy with regards to

monetary shocks or the response to supply shocks (i.e., u∗t , v
∗
t , φ

∗ are unaffected).

As for optimal monetary policy response to velocity shocks, ψ∗, the central bank

again seeks to ensure that realized output follows the natural level. This occurs if

the central bank responds to velocity shocks so that velocity shocks have precisely

zero impact on output. This can be achieved by setting:

ψ∗ = −γρx − 1

γ − 1
(42)

9 Discussion of optimal policy

The solution for optimal monetary policy when agents have incomplete informa-

tion about the state of the economy is the main contribution of this paper. Below,

we discuss the relation between optimal policy in our environment and two popular

monetary policy targets: inflation targeting and nominal income (NGDP) target-

ing. We also discuss time consistency and implementability issues facing monetary

policymakers.

9.1 Optimal policy’s relation to nominal income targeting

Prior authors have asserted that in models of monetary misperceptions, nominal

income targeting is optimal policy (cf. Selgin (1997)). According to the logic
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above, this is almost the case.

Nominal income targeting would be optimal if φ∗ = 0 and ψ∗ = −1. That is,

nominal income targeting is optimal if the central bank should not vary the money

stock in response to supply shocks, but should offset changes in money demand

one-for-one.

In the case where shocks follow a unit root (i.e. ρa = ρx = 1), this is nearly the

case. Indeed, in this case, we do have ψ∗ = −1. However, optimal policy would

not have the central bank completely ignore supply shocks: φ∗ 6= 0. However,

optimal policy approaches nominal income targeting as information approaches

completeness.

In the more general case where shocks follow a Markov process, policy is likely

to be quite close quantitatively to nominal income targeting. Further, if the central

bank does not have perfect information about the structural parameters of the

economy, then nominal income targeting may be superior to fine-tuning of the

central bank’s reaction function (see below for further discussion).

Finally, nominal income targeting is always optimal if agents have log prefer-

ences over consumption: in the limit as σ approaches unity (i.e., log utility), then

φ∗ = 0.

Why is nominal income targeting not precisely optimal more generally?

The intuition for the optimality of nominal income targeting comes from the

following idea: in the face of a technology shock, the central bank should not alter

the money supply (i.e. φ should be 0), since the central bank cannot affect the

supply-side of the economy but only the demand-side. Otherwise put, one might

expect that if the central bank does nothing in response to a technology shock,

then output would immediately jump to its new natural level.

However, output – at least in the framework outlined above – cannot jump

precisely to its new natural level. This is because agents can only estimate exactly
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what the productivity shock today is, so they can only estimate what the new

natural rate of output is, and jump to that. The central bank can correct this

by its choice of φ and ensure that, following a technology shock, output jumps

immediately to its new natural level.

9.2 Optimal policy and inflation targeting

It is worthwhile to highlight the fact that optimal policy differs from the strict

inflation targeting that is often advocated, e.g. from the most basic sticky price

model.3 In a sticky price model, in the case of the negative supply shock mentioned

above, the optimal policy rule has the central bank raise interest rates to lower

inflation back to zero. In our model, that would be highly suboptimal and would

induce monetary misperceptions. By keeping the price level constant, agents would

not be able to perceive the true change in productivity, and output would be

reduced below its full-information level and welfare would be reduced.

This difference has important real-world consequences. For example, the Eu-

ropean Central Bank (ECB) strictly targets inflation, more so than other central

banks. In 2011, the ECB chose to raise its policy rate in the face of rising prices

due to a negative supply shock – rising oil prices. This is logical under strict infla-

tion targeting. However, monetary misperceptions theory would have advocated

instead that the ECB allow prices to rise temporarily, so as to signal the nega-

tive supply shock, as described above. Indeed, following the ECB’s rate hike, the

eurozone was plunged into a double-dip recession from which it still struggles to

recover.

3i.e., the New Keynesian model with a single composite good and the Calvo staggered price
friction. As Selgin (1997) discusses, sticky prices do not necessarily imply the optimality of
strict zero inflation targeting if (1) the price stickiness is the result of menu costs, (2) there are
heterogeneous goods, and (3) there are both aggregate and idiosyncratic shocks.
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9.3 Time consistency and implementability

The optimal policy described above is time consistent. Monetary misperceptions

in this model only last one period, so the dynamics are limited. Additionally, the

welfare approximation is a negative function of the deviation of output from its

full-information level, squared. This means that the central bank has no incentive

to push output above its full-information level. This is in contrast to a more

naive central bank objective function not derived from first principles which would

merely seek to maximize output.

A more pertinent critique of the optimal policy described above is imple-

mentability. Except under log utility or in the limiting case, optimal policy requires

the central bank respond, to some extent, to productivity shocks (φ∗ 6= 0). As a

result, the central bank must be able to measure the exact size of the technol-

ogy shock – that is, it must know the true potential output of the economy. For

standard Hayekian reasons, this is not feasible (see further discussion in Halperin

2015). It must be noted, however, that any model which prescribes that the cen-

tral bank follow a Taylor Rule that responds to potential output will fall victim

to this same critique.4

10 Conclusion

In the metaphor of Selgin (1997), consider listening to a symphony on the radio.

Randomly turning the volume knob up and down merely detracts from the musical

performance (random variation in the price level is not useful). But, the changing

volume of the orchestra players themselves, from quieter to louder and back down

again, is an integral part of the performance (the price level should adjust with

4See Beckworth and Hendrickson (2016) for a calibrated sticky price model where the central
bank must estimate potential output with error.
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natural variations in output). The changing volume of the orchestra should not be

smoothed out to maintain a constant volume (constant inflation is not optimal).

This paper makes this argument rigorously in a full-scale DSGE framework.

We build a model from first principles where agents have only information about

local economic conditions – productivity, money supply, money demand – and

limited information about these variables in aggregate. We show that the welfare

of these agents is maximized when output is at the level which would obtain in the

absence of said information frictions. This can be achieved through appropriate

monetary policy, specifically, a policy which allows for some aggregate price level

variation in response to technology shocks.

There are several natural next steps. First, empirical evidence on the impor-

tance of monetary misperceptions deserves to be reexamined. Given the wealth

of forecasting data from professional forecasters and financial insitutions which

exists today that did not exist 40 years ago when the Lucas islands model was

first developed, it should be possible to get a more precise read on the economic

impact of surprise money supply shocks.

Second, to match real world dynamics, this model will need to be extended to

incorporate persistence of incomplete information. In our framework, incomplete

information is reversed after one period. Thus, this model cannot capture the

empirical result that the dynamics of inflation and output are smooth over time.

Finally, additional frictions could be incorporated into the model, such as sticky

prices or wages, so that anticipated as well as unanticipated monetary shocks affect

output.
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Appendix A: Log linearized CIA model

Steady state

To linearize around the steady state, we must first solve for the steady state. From

Euler equation (8), we get the steady state real rate of interest is equal to the rate

of time preference: 1+iss

1+πss
= 1/β. From market clearing on aggregate resources, we

get: css = yss.

With a positive nominal interest rate, the CIA constraint (2) binds, and css =

τ ss+mss/(1+πss); but in a steady state with constant m, then τ ss+mss/(1+πss) =

mss. So, we get that css = mss.

Combining (5) and (7), λss = β
1+πss

css−σ = [1− Φ] css−σ, where, as defined in

the text, Φ ≡ 1 − β
1+πss

= iss

1+iss
is a measure of the steady state deviation from

Friedman rule, which equals zero when the Friedman rule is implemented.

This in turn implies using (7) that µss = Φcss−σ.

From production function (4), yss = assnss. From the labor market clearing

condition, using the steady state result for λ and output, nss =
[

1
χ

β
1+πss

] 1
σ+η

ass
1−σ
σ+η

Linearization

Define the percentage deviation of variable x from its steady state value xss as

x̂t = xt
xss
− 1. We apply this to all variables excepting interest rates and inflation,

which are already percentages, where we instead define ît = it − iss, π̂t = πt − πss.

We will use four Uhlig toolkit rules extensively:

1. Product terms don’t matter: uw = uss(1 + û)wss(1 + ŵ) ≈ usswss(1 + û+ ŵ)

2. Applying repeatedly the above, ua = ussa(1 + û)a = ussa(1 + aû)

3. And, log u = log[uss(1 + û)] = log uss + log(1 + û) ≈ log uss + û

25



4. In the case of interest rates and inflation, 1+xt
1+xss

≈ 1 + x̂t

First, linearizing the production function gives (9):

yt = atnty
ss(1 + ŷt) + assnss(1 + ât)(1 + n̂t)

=⇒ 1 + ŷt = (1 + ât)(1 + n̂t)

=⇒ ŷt = ât + n̂t (A1)

Next, immediately by market clearing, we have ĉt = ŷt. Further, in an equilib-

rium with a positive nominal interest rate, the CIA constraint binds and

ct = mt−1

1+πt
+ τt = mt−1

1+πt
+ Mt−Mt−1

pt
= Mt−1

pt−1

pt−1

pt
+ Mt

pt
− Mt−1

pt
= mt Thus,

ĉt = m̂t (A2)

Combining (5), (7), c = y, and linearizing:

λt = βEt[y
−σ
t+1/(1 + πt+1)]

=⇒ λss(1 + λ̂t) = β yss−σ

1+πss
Et

[
(1− σŷt+1) 1+πss

1+πt+1

]
=⇒ 1 + λ̂t = Et

[
1−σŷt+1

1+π̂t+1

]
=⇒ λ̂t+1 = Et[−σŷt+1 − π̂t+1] (A3)

From linearizing the labor market equilibrium condition:

χnηt = yt
nt
λt

=⇒ χnssη(1 + ηn̂t) = yss

nss
λss(1 + ŷt − n̂t + λ̂t)

=⇒ (1 + η)n̂t = ŷt + λ̂t (A4)

From linearizing the Euler equation:

λt = βEt

[
λt+1

1+it
1+πt+1

]
=⇒ λss(1 + λ̂t = βλss 1+iss

1+πss
Et

[
(1 + λ̂t+1) 1+it

1+πt+1

1+πss

1+iss

]
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=⇒ 1 + λ̂t = Et

[
(1 + λ̂t+1) 1+ît

1+π̂t+1

]
=⇒ λ̂t = Etλ̂t+1 + ît − Etπ̂t+1 (A5)

Combining (7) and (8):

Et

[
λt+1+µt+1

1+πt+1

]
= Et

[
λt+1

1+it
1+πt+1

]
Et

[
µt+1−λt+1it

1+πt+1

]
= 0

Et[1 + µ̂t+1 − π̂t+1]− λss

µss
issEt[1 + λ̂t+1 − π̂t+1]− λss

µss
Et

[
ît

1+π̂t+1

]
= 0

Note λss

µss
= 1−Φ

Φ
= 1

iss
, so

Et[µ̂t+1 − λ̂t+1] =
1− Φ

Φ
Etît (A6)

(A1)-(A6) correspond to (9)-(14).

Appendix B: Unconstrained full-information out-

put

Full-information, unconstrained output is defined as the level of output which

would occur in the absence of any information frictions and in the absence of the

CIA constraint. This can be derived using the labor market equilibrium condition,

(6) (rather than (18), which includes information frictions). The condition is:

χnit
η

= λit
yit
nit

Substitute out λ using the marginal utility of wealth equation (5) and market

clearing c = y:

χnit
η

yit
−σ−µit

=
yit
nit

As mentioned, we want unconstrained output, so we turn off the CIA constraint

by setting µit = µss = 0:

χnit
η
yit
σ

=
yit
nit
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Next, substitute out for labor using the production function nit = yit/atℵit. This

gives:

χ
(

yit
atℵit

)η
yit
σ

= atℵit
Rearranging, and denoting this level of output as the full-information uncon-

strained level yit
f
, we have

yit
f

=
[

(atℵit)1+η
χ

] 1
η+σ

Linearizing this gives the full-information unconstrained level of output cited

in equation (26):

ŷi,ft =
1 + η

σ + η

[
ât + ℵ̂it

]
The derivation for aggregate full-information unconstrained output is exactly anal-

ogous, simply ignoring the superscript i’s and ℵi.

Appendix C: The welfare approximation

To take a second order approximation, we begin by defining the following notation:

Xss : steady state

X̃t = Xt −Xss

X̂t = logXt − logXss

Given this notation,

Xt

Xss
≈ 1 + log

Xt

Xss
+

1

2

[
log

Xt

Xss

]2

= 1 + X̂t +
1

2
X̂2
t

Furthermore, since we can write X̃t = Xss
(
Xt
Xss − 1

)
, we get that

X̃t ≈ Xss

(
X̂t +

1

2
X̂2
t

)
For the sake of clarity, we drop i superscripts below.

We wish to approximate period utility around its steady state, where period
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utility is

Ut = U(ct, nt) =
1

1− σ
c1−σ
t − χ

1 + η
n1+η
t ≡ W (ct)− V (nt)

We first do a second order approximation of W (ct). Taking a Taylor approxi-

mation,

W (ct) ≈ W (css) +Wc(c
ss)c̃t + 1

2
Wcc(c

ss)2c̃2
t

Using the notation and results above to substitute,

W (ct) ≈ W (css) +Wc(c
ss)
(
ĉt + 1

2
ĉ2
t

)
+ 1

2
Wcc(c

ss)2
(
ĉt + 1

2
ĉ2
t

)2

Dropping terms of third order or higher,

W (ct) ≈ W (css) +Wc(c
ss)
(
ĉt + 1

2
ĉ2
t

)
+ 1

2
Wcc(c

ss)2ĉ2
t

Given our choice of utility function, Wcc = σWc/c, so

W (ct) ≈ W (css) +Wc(c
ss)css

[
ĉt +

1

2
(1− σ)ĉ2

t

]
In parallel, one can derive that

V (nt) ≈ V (nss) + Vn(nss)nss
[
n̂t +

1

2
(1 + η)n̂2

t

]
Combining these two expressions to get period welfare, and noting that css =

yss = nss; ĉt = ŷt; n̂t = ŷt − ât, and that Vn(nss)
Uc(css)

= yss

nss
= 1, we get that

Ut − U ss = Wc(y
ss)yss

[
ŷt +

1

2
(1− σ)ŷ2

t

]
− Vn(nss)yss

[
ŷt − ât +

1

2
(1 + η)(ŷt − ât)2

]
= Uc(y

ss)yss
{

1

2
(−σ − η)ŷ2

t + ât −
1

2
(1 + η)(ŷ2

t − 2ŷtât + â2
t )

}
= Uc(y

ss)yss
{

[1 + (1 + η)ŷt]ât −
1

2
[σ + η]ŷ2

t −
1

2
(1 + η)â2

t

}
We now manipulate this equation, adding and subtracting terms independent

of policy, to achieve an equation of the desired form:

2 1
1+η

Ut−Uss
Uc(yss)yss

= 2 at
1+η

+ 2ŷtât − σ+η
1+η

ŷ2
t − â2

t

2 1+η
σ+η

1
1+η

Ut−Uss
Uc(yss)yss

= 2 1+η
σ+η

at
1+η

+ 2 1+η
σ+η

ŷtât − ŷ2
t −

1+η
σ+η

â2
t
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Or,

ξ [Ut − U ss] = −1

2

[
ŷt − ŷft

]2

+ t.i.p.

t.i.p =
1 + η

σ + η

ât
1 + η

− 1

2

(
1 + η

σ + η

)
â2
t −

1

2

(
1 + η

σ + η

)2

â2
t

ξ =
1

σ + η

1

Uc(yss)yss

This is the equation shown in (28).

Appendix D: The recursive laws of motion

The relevant system of equations is:

ŷit = n̂it + ât + ℵ̂it (a)

λ̂it = Ei
t [−σŷt+1 − π̂t+1] (b)

(1 + η)n̂it = ŷit + λ̂it (c)

ŷit = M̂ i
t − p̂it (d)

From (c) and (a), we get that

λ̂it = (1 + η)n̂it − ŷit = (1 + η)n̂it − ŷit = ηŷit − (1 + η)[ât + ℵ̂it].

Substituting this into (b), we get

ηŷit − (1 + η)[ât + ℵ̂it] = Ei
t [−σŷt+1 − π̂t+1]

Substituting out for output using the CIA constraint, and for inflation in terms of

the price level,

η[M̂t−1− p̂t−1]− (1 + η)[ât + ℵ̂it] = Ei
t

[
−σ
(
M̂t+1 − p̂t+1

)
− p̂t+1 + p̂it + T̂t+1

]
(*)
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Note the expression for conditional expected money supply at t and t+ 1:

Ei
tM̂t = ρmM̂t−1 + vt + Ei

tut + φEi
t ât

= ρmM̂t−1 + vt + κ(ut + uit) + φω(ât + ℵ̂it)

Ei
tM̂t+1 = ρmE

i
tM̂t + φEi

t ât+1

= ρm

[
M̂t−1 + vt + κ(ut + uit)

]
+ φω(ρm + ρa)(ât + ℵ̂it)

Substituting this into (*) and consolidating terms,

(1 + η)p̂it = ηM̂ i
t

+ [−(1 + η)− (1− σ)φω(ρm + ρa) + φω] (ât + ℵ̂it)

+ [−(1− σ)ρm + 1]
[
ρmM̂t−1 + vt + κ(ut + uit)

]
− (σ − 1)Ei

t p̂t+1

Substituting in the island-specific money supply rule, M̂ i
t = ρmM̂t−1 + vt + ut +

uit + φât + φiℵ̂it, this becomes

(1 + η)p̂it = ηM̂ i
t

+ [−(1 + η)− (1− σ)φω(ρm + ρa) + φω(1 + η/ω)] ât

+
[
−(1 + η)− (1− σ)φω(ρm + ρa) + φω + ηφi

]
ℵ̂it

+ [−(1− σ)ρm + 1 + η] ρmM̂t−1

+ [−(1− σ)ρm + 1 + η] vt

+
[
−(1− σ)ρm + 1 +

η

κ

]
κ(ut + uit)

− (σ − 1)Ei
t p̂t+1 (**)

We now solve via method of undetermined coefficients: suppose

p̂it = a1M̂t−1 + a2vt + a3ut + a4u
i
t + a5ât + a6ℵ̂it
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Note that

p̂t = a1M̂t−1 + a2vt + a3ut + a5ât

So that

Ei
t p̂t+1 = a1[ρmM̂t−1 + vt + κ(ut + uit)] + [a1φ+ a5ρa]ω[ât + ℵ̂it]

We now isolate terms and solve for coefficients a1, ..., a6 by substituting the

expressions for p̂t and Ei
t p̂t+1 into (**).

For M̂t−1,

(1 + η)a1 = [−(1− σ)ρm + 1 + η]ρm − (σ − 1)a1ρm

=⇒ a1 = ρm

For vt,

(1 + η)a2 = [−(1− σ)ρm + 1 + η]− (σ − 1)a1

=⇒ a2 = 1

For ut,

(1 + η)a3 = [−(1− σ)ρm + 1 + η
κ
]κ− (σ − 1)ρmκ

=⇒ a3 = η+κ
η+1

For uit,

(1 + η)a4 = [−(1− σ)ρm + 1 + η
κ
]κ− (σ − 1)ρmκ

=⇒ a4 = η+κ
η+1

For ât,

(1 + η)a5 = [−(1 + η)− (1− σ)φω(ρm + ρa) + (1 + η/ω)φω]− (σ− 1)ω[a1φ+ a5ρa]

=⇒ a5 = − η+1
η+1+(σ−1)ωρa

+ φη+ω+(σ−1)ωρa
η+1+(σ−1)ωρa

For ℵ̂it,

(1 + η)a6 = [−(1 + η)− (1− σ)φω(ρm + ρa) + φω + ηφi]− (σ − 1)ω[a1φ+ a5ρa]

=⇒ a6 = −1 + η
η+1

φi + φω+(σ−1)ωρa
η+1

− σ−1
η+1

ωρaa5

These are the results shown in equation (29)-(32).
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