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Four facts about macro forecasts

Data: professional forecasters

▶ 89 countries

▶ Average forecasts of GDP, inflation, consumption,

investment

▶ 0-10 year forecasts

Four facts about forecasts relative to outcomes:

1. < 1 year expectations under -revise

2. 2+ year expectations over -revise

3. At all horizons, expectations are too extreme

4. Over-revision and over-extremity increase in

forecast horizon

Theory:

▶ Inconsistent with some

popular models of

overreaction

▶ Consistent with a model

of costly recall and sticky

info
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Which horizon relates to economic and financial fluctuations?

Bordalo et al (2024): in US, overreacting long-term expectations predict boom-bust

in stocks, investment, and GDP

International evidence: movement in short-term expectations (≤ 2 year)

expectations most strongly associated with stocks, investment, GDP fluctuations

▶ But in US data longer-horizon (5+ year) expectations have strongest association

2
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Roadmap

1. Four facts: regressions of forecast errors on forecast revisions + lagged forecast

• Adjusting for biases helps with OOS forecasting

2. Model of costly recall & sticky info matches the data

• Comparison with other models

3. Movements in short-term GDP expectations are associated with fluctuations in

investment and GDP: via local projections

4. High short-term GDP expectations predict subsequent stock returns
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Contribution and related literature

Geography Variables Horizon

Coibion and Gorodnichenko (2015) AE macro 0-6 quarters

Angeletos, Huo, and Satry (2021) US macro 0-2 years

Kohlhas and Walther (2021) AE macro 1-year

d’Arienzo (2021) US macrofinancial 0-30 years

Beaudry and Willems (2022) AE + EM GDP 3-year and 5-year

Afrouzi et al. (2023) lab simulated 0-10 periods

de Silva and Thesmar (2023) US financial 0-4 years

Kohlhas and Broer (2023) US inflation 0-6 quarters

Bordalo et al. (2024) US financial 0-5 years

Bianchi, Ilut, and Saijo (2024) US macro 1-year

Sung (2025) US macro 3 quarters

Adam, Pfauti, and Reinelt (2025) US housing 0-2 years

Crump et al. (2025) US macro 0-11 years

Halperin and Mazlish (2025) AE + EM macro 0-10 years

Implications for economic &

financial fluctuations:

▶ Bianchi, Ilut, Saijo (2024)

▶ L’Hullier, Singh, Yoo (2023)

▶ Faccini and Melosi (2022)

▶ Bordalo et al. (2023)

▶ Beaudry and Portier (2004)

▶ Bianchi, Ludvigson, and Ma

(2024)

4



Contribution and related literature

Geography Variables Horizon

Coibion and Gorodnichenko (2015) AE macro 0-6 quarters

Angeletos, Huo, and Satry (2021) US macro 0-2 years

Kohlhas and Walther (2021) AE macro 1-year

d’Arienzo (2021) US macrofinancial 0-30 years

Beaudry and Willems (2022) AE + EM GDP 3-year and 5-year

Afrouzi et al. (2023) lab simulated 0-10 periods

de Silva and Thesmar (2023) US financial 0-4 years

Kohlhas and Broer (2023) US inflation 0-6 quarters

Bordalo et al. (2024) US financial 0-5 years

Bianchi, Ilut, and Saijo (2024) US macro 1-year

Sung (2025) US macro 3 quarters

Adam, Pfauti, and Reinelt (2025) US housing 0-2 years

Crump et al. (2025) US macro 0-11 years

Halperin and Mazlish (2025) AE + EM macro 0-10 years

Implications for economic &

financial fluctuations:

▶ Bianchi, Ilut, Saijo (2024)

▶ L’Hullier, Singh, Yoo (2023)

▶ Faccini and Melosi (2022)

▶ Bordalo et al. (2023)

▶ Beaudry and Portier (2004)

▶ Bianchi, Ludvigson, and Ma

(2024)

4



Data

Evidence: Four facts on overreaction by horizon

Theory

Evidence: Expectations and fluctuations

Conclusion

Appendix



Data visualizations

Data source: Consensus Economics “long-term forecasts”

▶ Surveys of professional forecasters

▶ Mean forecasts at 0,1,2,3,4,5 year horizon + 6-10 year period

• “Short-term forecasts” data: quarterly out two years [Coibion-Gorodnichenko]

▶ 89 countries

▶ GDP, inflation, consumption, investment

▶ Longest sample: 1989-2023

▶ Biannual surveys prior to 2014; quarterly since

▶ Total: n ≈ 4200 for GDP and inflation; n ≈ 3200 for consumption and investment
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Regression specification: Two notions of overreaction noise two-var

Where x is {GDP, inflation, consumption, investment} and et+h is forecast error, xt+h − Etxt+h:

run at each horizon h,

et+h︸︷︷︸
forecast error

= α + β1 · ∆Etxt+h︸ ︷︷ ︸
forecast revision

+ β2 · Et−1xt+h︸ ︷︷ ︸
lagged forecast

▶ No platonic definition of “overreaction”

▶ Here, two notions: [BGLS 2024]

1. When the forecast revises, does it move too much or too little?

β1 < 0 implies over-revision (Coibion-Gorodnichenko)

2. When the lagged forecast is high, does that predict forecast errors today?

β2 < 0 implies over-extremity (Bordalo-Gennaioli-La Porta-Shleifer 2024)

▶ FIRE: β1 = β2 = 0

▶ Main specification: panel regression, pooled over variables, c-x fixed effects
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Main results: under/overreaction by horizon other FE no FE consistent sample first rev

0 1 2 3 4 5 6-10

Horizon (years)

−0.4

−0.2

0.0

0.2

All variables

β1: Forecast revision

β2: Forecast lag

Four facts:

1. < 1 year horizon forecast

under-revises

2. ≥ 2 year horizon

forecasts over-revise

3. At all horizons,

expectations are too

extreme (β2 < 0)

4. Overreaction increases in

horizon
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Results by forecast variable
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Dropping 2008 distribution over years
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▶ Drop all observations

where forecast date is

before 2008 and horizon

is 2007 or later

▶ The six-ten year out

forecast sample goes

from 3223 observations

to 793
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First half versus second half of sample by year split years consistent split
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Overreaction in advanced vs. emerging economies by country
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Out-of-sample forecasts and bias instability

If forecast biases are stable, adjusting for them should help with OOS forecasting

▶ We find: Adjusting does help, especially at longer horizons

▶ ...in contrast to Eva and Winkler (2023)

• US data, ≤ 1 year forecasts

1. At each date: run regression, using data up to that point =⇒ β1,t and β2,t

2. Compute “bias-adjusted” forecast E∗
t xt+h:

E∗
t xt+h ≡ Etxt+h + β1,t∆Etxt+h + β2,tEt−1xt+h

3. Compute sum of squared errors, SSE∗ =
∑

t (xt+h − E∗
t xt+h)

2

4. Relative improvement x: “unadjusted forecasts have x% larger SSE”

x =
SSE− SSE∗

SSE

12
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Improved out-of-sample forecasting at all horizons; especially at longer horizons
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OOS forecasting improvement

▶ Adjusting forecasts

improves performance at

all horizons

▶ 22.4% lower SSE at 6-10

year horizon
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Which models fit the facts?

1. Overreaction increasing in horizon is inconsistent with other popular models of
overreaction

• Simple over-extrapolation (AHS 2021), baseline DE (Bordalo et al. 2020)

2. Costly recall with uncertain long-run mean (Afrouzi et al. 2023) + sticky
information

• Emerging lit consistent with overreaction increasing in horizon: Bianchi et al.

(2024), Farmer et al. (2024), Sung (2025) smooth DE
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Afrouzi et al. (2023) costly recall

Agents forecast an AR(1) process:

xt = (1− ρ)µ+ ρxt−1 + ϵt

ϵt ∼ (0, σ2
ϵ )

Agents are uncertain about long-run mean; and can process most recent observation

(xt) freely, but processing additional information St with a cost:

Ct(St) ≡ ω
exp (γI(St , µ|xt))− 1

γ
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Afrouzi et al. (2023) costly recall: results

Afrouzi et al. proposition 1: Forecasts overreact relative to the rational benchmark:

Ftxt+h = Etxt+h︸ ︷︷ ︸
rational forecast

+(1− ρh)min

{
1,

(
ωτ

(1− ρh)2

) 1
1+γ

}
xt︸ ︷︷ ︸

overreaction(≡∆)

+ ut︸︷︷︸
noise

Where τ is the minimum precision of the agent’s posterior belief about the long-run

mean: var(µ|xt)−1

Afrouzi et al. proposition 2: The degree of overreaction ∆ is increasing in h, iff

cost-curvature γ ≥ 1

16



Costly recall: implications for over-revision and over-extremity proof sketch

Our proposition 1: Under costly recall,

1. Both over-revision and over-extremity, at all horizons

2. Over-revision = over-extremity

3. Both increase in horizon iff γ ≥ 1

βh
1 = βh

2 = − ∆h

ρh +∆h
≤ 0

dβh
1

dh
=

dβh
2

dh
< 0 ⇐⇒ γ ≥ 1

Problem: does not match (i) under-revision at short horizons, β0
1 > 0,

or (ii) βh
1 > βh

2 .
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Noisy and sticky info implications proof sketch

Noisy info: If agents observe noisy signal st = xt + et , et∼(0, σ2
e ), then:

βh
1 < βh

2 ∀h

Sticky info: If fraction λ of agents update their forecast each period, then:

βh
1 > βh

2 ∀h

=⇒ need sticky info, not noisy info, to match results

▶ NB: noisy-info can push both β1, β2 > 0; sticky info can only push β1 > 0
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Calibration

▶ Calibrate the model to match the non-z-scored results for just GDP

▶ Take γ, ω from Afrouzi et al.

▶ Set ρ based on regressing gt on gt−1 across all countries, with country FE

▶ Calibrate λ = 0.725
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Calibrated model vs. data zscored

0 1 2 3 4 5 6-10

Horizon (years)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

GDP - β1 comparison

Data β1: forecast revision

Model β1

0 1 2 3 4 5 6-10

Horizon (years)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

GDP - β2 comparison

Data β2: Forecast lag

Model β2

20



Data

Evidence: Four facts on overreaction by horizon

Theory

Evidence: Expectations and fluctuations

Conclusion

Appendix



Local projections framework details

How are realized future outcomes influenced by the change today in GDP growth

expectations?

xt+h = α+ γh6→10 ·∆1 Et(gt+6→t+10)︸ ︷︷ ︸
one-year change in

long-term
expected GDP growth

+ β · controlst + FE + ϵt

▶ Approach comparable to Bordalo et al. 2024, who find movements in long-term

earnings growth forecasts cause US business cycle fluctuations

▶ Question: do movements in short-term or long-term GDP growth expectations

better predict subsequent fluctuations?
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Local projections framework details

How are realized future outcomes influenced by the change today in GDP growth

expectations?

xt+h = α+ γh0→2 · ∆1 Et(gt→t+2)︸ ︷︷ ︸
one-year change in

short-term
expected GDP growth

+ β · controlst + FE + ϵt

▶ Approach comparable to Bordalo et al. 2024, who find movements in long-term

earnings growth forecasts cause US business cycle fluctuations

▶ Question: do movements in short-term or long-term GDP growth expectations

better predict subsequent fluctuations?
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Long-term GDP growth expectations are not associated with fluctuations

Using 6-10 year expectations:

xt+h = α+ γh6→10 ·∆1 Et(gt+6→t+10) + β · controlst + FE + ϵt
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Investment: long-term growth expectations
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Impact=-0.03

0 1 2 3 4 5

Horizon (years)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

GDP: long-term growth expectations

Horizon 2, N=545
Impact=-0.05
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But short-term growth expectations are associated with fluctuations

Using cumulative 0-to-2 year expectations:

xt+h = α+ γh0→2 ·∆1 Et(gt→t+2) + β · controlst + FE + ϵt
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Even excluding the GFC

Using cumulative 0-to-2 year expectations:

xt+h = α+ γ0→2 ·∆1 Et(gt→t+2) + β · controlst + FE + ϵt
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Investment: short-term growth expectations, no GFC

Horizon 2, N=449
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Stock return predictability

Are future stock market returns predicted by today’s GDP growth expectations?

rt+h = α+ γh · Et(g)︸ ︷︷ ︸
either short-term
or long-term

expected GDP growth

+ϵt

▶ Question: do short-term or long-term growth expectations better predict

subsequent three-year and five-year returns?

▶ Bordalo et al. (2024) find long-term expectations are the stronger predictor
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In the US, long-term expectations are the stronger predictor table

3-year return 5-year return

−0.5
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−0.2

−0.1

0.0
R2 = 0.04 R2 = 0.24 R2 = 0.03 R2 = 0.11

US return regressions

0-2yr GDP forecast

6-10yr GDP forecast

▶ In US, long-term GDP

growth expectations are

strongest predictor of

returns

▶ Magnitude of results

comparable to Bordalo et

al. 2024
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Across 34 countries, short-term expectations are the better predictor table

3-year return 5-year return
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−0.15
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−0.05

0.00

0.05 R2 = 0.01 R2 = 0.01 R2 = 0.04 R2 = 0.00

34 country return regressions

0-2yr GDP forecast

6-10yr GDP forecast

▶ Short-term GDP growth

expectations most

predictive of returns
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Conclusion

▶ In a large cross-country sample, four facts about average macroeconomic
forecasts emerge:

1. < 1 year horizon forecasts under-revise

2. ≥ 2 year horizon forecasts over-revise

3. At all horizons, expectations are too extreme

4. Overreaction increases in horizon

▶ A model of expectation formation under costly recall and sticky updating matches

these features

▶ While long-horizon expectations overreact most, short-horizon expectations are

most associated with subsequent business-cycle and stock-market fluctuations
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Lit Review: Horizons back

▶ Coibion and Gorodnichenko 2015: up to 6 quarter ahead

▶ AHS 2021: one-year expectation errors

▶ Bianchi, Ludvigson, Ma 2022 AER: <= 1yr expectations

▶ Beaudry and Willems AEJM 2022: 3-year horizon forecasts, results robust to 5-year

▶ Bianchi, Ilut, Saijo Restud 2024: peak 2-3 years after shock, trough 5-6 years later, model only

▶ L’Hullier, Singh, Yoo Restud 2023: focus on ”one-step-ahead” forecast

▶ Bianchi, Ilut, Saijo NBER 2024: one-year forecast errors

▶ Afrouzi et al. 2023 QJE: more overreaction with horizon, experimental set-up not directly translatable to time

▶ Patton and Timmermann 2010 JME: up to 2-year horizon

▶ Faccini and Melosi 2022 AEJM: up to 2-year horizon

▶ Bordalo et al. 2023 NBER Macro: 3-5 year expectations, document bust on 7-9 quarter horizon

▶ Bordalo et al. 2024 JPE: 3-5 year expectations

▶ Kohlhas and Walther 2021 AER: one-year ahead forecasts

▶ Kohlhas and Broer 2023 ReStat: one-year ahead forecasts

▶ de Silva and Thesmar 2023 ReFinSt: up to 4-year expectations

▶ d’Arienzo 2021: documents increasing overreaction with maturity in interest rates, out to 30 years!

▶ Sung 2025: a model that explains which of under or over-reaction will prevail depending on the information environment and forecast horizon

▶ Adam, Pfauti, and Reinelt (2025): Households’ housing price expectations underreact at 1-year horizons and overreact at 2-year horizons
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Forecasts and forecast errors: visual summary back
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Forecasts and forecast errors: visual summary back
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Forecasts and forecast errors: visual summary back

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Inflation GDP

0 5 10 15

Forecasts

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Consumption

0 5 10 15

Forecasts

Investment

Distribution of forecasts

30



Forecasts and forecast errors: visual summary back
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Forecasts and forecast errors: visual summary back
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Forecasts and forecast errors: visual summary back
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Forecasts and forecast errors: visual summary back
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Visual Evidence: G7 Only back

31



Visual Evidence: No G7 back
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Visual Evidence: Short-term expectations on short-term outcomes back
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Visual Evidence: Long-term expectations accuracy back
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Visual Evidence: Individual Year Forecast Accuracy back
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Visual Evidence: Cumulative Forecast Accuracy back
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FC Lags Predict FC Revisions back
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FC SD: GDP and Inflation back
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FC SD: Consumption and Investment back
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Robustness: Different FE back
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Robustness: No FE back
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Robustness: first yearly revision only back
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Proof sketch for Proposition 1 back

Setup

ut = ρut−1 + νt , Ft (h) = (ρh + ∆h) ut ,

Rt (h) = (ρh + ∆h)(ut − ut−1), Lt−1(h) = (ρh + ∆h)ut−1,

FEt+h = −∆hut +

h−1∑
j=0

ρ
h−1−j

νt+1+j .

OLS coefficients

Let D ≡ Var(R) Var(L) − Cov(R, L)2 > 0. Using standard variance–covariance algebra we obtain

β1 =
Cov(FE , R) Var(L) − Cov(FE , L) Cov(R, L)

D
, β2 =

Cov(FE , L) Var(R) − Cov(FE , R) Cov(R, L)

D
,

=⇒ β
h
1 = β

h
2 = −

∆h

ρh + ∆h

≤ 0

Monotonicity (if min-constraint slack)

∆h = C
(
1 − ρ

h) γ−1
γ+1 , C > 0, ∆′

h > 0 (γ ≥ 1),

β
′(h) = −

∆′
h

ρh + ∆h

+
∆hρ

h ln ρ

(ρh + ∆h)
2

< 0 ⇐⇒ γ ≥ 1.
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Proposition 2 (noisy information): βh
1 < βh

2 ∀h back

Setup

Signal : st = xt + εt , εt
iid∼ (0, q) Kalman gain : κ0 =

τε

τ0 + τε
∈ (0, 1)

Ft (h) = bh ut + Wεεt , bh := κ0
[
κh(1 − ρ

h) + ρ
h]

Rt (h) = bh(ut − ut−1) + Wε(εt − εt−1),

Lt−1(h) = bhut−1 + Wεεt−1,

FEt+h = (ρh − bh)︸ ︷︷ ︸
δh

ut − Wεεt +
h∑

j=1

ρ
h−j

νt+j .

OLS formulas

β1 =
Cov(FE , R) Var L − Cov(FE , L) Cov(R, L)

D
, β2 =

Cov(FE , L) Var R − Cov(FE , R) Cov(R, L)

D
.

Ordering (key step)

N1 − N2 = −ρ bh W 2
εqA

(
bh + δh

)
< 0 =⇒ β

h
1 < β

h
2 ∀h .

Noise may lift β1, β2 above zero, but maintains the strict inequality.
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Proposition 2 (sticky information): βh
1 > βh

2 ∀h back

Setup

Only a fraction λ update each period; let π := 1 − λ ∈ (0, 1).

Ft (h) = λbhut + λdt , dt :=
∞∑
k=1

π
kbh+kut−k , bh = ρ

h + ∆h.

Rt (h) = Ft (h) − Ft−1(h) = λbhut −
λ2

π

∞∑
k=1

π
kbh+kut−k ,

Lt−1(h) =
λ

π
dt ,

FE∗t+h = (ρh − λbh)ut − λdt .

All three variables lie in span{ut , dt}. Using 2 × 2 moment matrix algebra,

β1(h) = −1 +
ρh

λbh
, β2(h) = −1 +

ρh

bh
.

=⇒ β
h
1 > β

h
2 ∀h
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Does overreaction increase when uncertainty increases? back

Model of Bianchi et al. 2024 predicts that overreaction will be more severe when

uncertainty increases

▶ Therefore, if longer-horizon forecasts exhibit less reduction in uncertainty across

survey dates, overreaction will be increasing in horizon

We test by running the following regression:

et+h = α+ β1 ·∆Etxt+h + β2 · Et−1xt+h + β3 ·∆Etxt+h ·
σt,h
σt−1,h

(1)

▶ Where σt,h is the standard deviation of horizon h forecasts at time t

▶ Smooth DE predicts β3 < 0: when uncertainty increases (or reduces less than

typical), overreaction is more severe
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Smooth DE: interaction term back
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Smooth DE: full results back
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G7 (consistent sample since 1990) back
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Distribution over years back
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Time split: years back
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▶ Horizon 0: 2014-07 (n = 4734 per half)

▶ Horizon 1: 2011-10 (n = 3888 per half)

▶ Horizon 2: 2010-10 (n = 3537 per half)

▶ Horizon 3: 2009-10 (n = 3200 per half)

▶ Horizon 4: 2008-10 (n = 2867 per half)

▶ Horizon 5: 2007-09 (n = 2533 per half)

▶ Horizon 10: 2004-04 (n = 1610 per half)
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Time split: July 2007 back
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Time split: July 2007 back
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Underreaction and overreaction everywhere back
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Are long-run revisions correlated with short-run cross-revisions?

∆Etxi,c,t+10 = αc +
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Moench, and Preston (2025):

▶ Short-horizon cross

revisions generally predict
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▶ Short-horizon cross

revisions never predict

long-horizon inflation
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Are long-run revisions correlated with short-run cross-revisions?
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LP: details back

xc,t+h = α+ γj∆1 Et(gc,t+j) + β2 Et(yt) + β3X
∗
c,t + fc + ϵi ,t (2)

The control X∗
t is a vector of lagged and contemporary macroeconomic variables which

allow us to control for standard business cycle dynamics

▶ The control X∗
t includes the contemporaneous 10-year real rate, the one-year change in the 10-year real

rate and one-year stock market return up to the forecast date; the one-year lag of GDP growth,

investment growth, inflation, and stock market return; the change in GDP growth and investment growth

from t − 2 to t − 1 and t − 3 to t − 2; the two-year lag of inflation and the stock market return; and the

t − 2 to t − 1 and t − 3 to t − 2 change in the country’s 10-year real interest rate.
▶ The 10-year real rate comes from subtracting cumulative 10-year inflation expectations from the country’s

10-year nominal rate in the OECD database
▶ The variable Et(yt) is the current-year forecast of the dependent variable Et(yt). Controlling for the

current-year forecast is used to control for the fact that if the forecast revision is measured in the middle

of the year, there is information about current-year economic conditions that is not controlled for by our

other lagged controls.
▶ Sample with all controls available is 21 countries
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In the US, long-term expectations are the stronger predictor back

Return Horizon

1-year 3-year 5-year 1y4y

2-year avg GDP growth −0.33∗∗∗ −0.21∗ −0.19

[3.2%]

−0.14

[13.5%] [3.7%] [1.7%]

10-year avg GDP growth −0.33∗∗∗ −0.33∗∗∗ −0.23∗∗ −0.13

[14.2%] [14.1%] [6.6%] [2.1%]

6-10 year avg GDP growth −0.26∗∗∗ −0.39∗∗∗ −0.27∗∗∗

[11.3%]

−0.17∗∗

[10.5%] [23.8%] [4.7%]

Notes: R2 in square brackets. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Across 34 countries, short-term expectations are the better predictor back

Return Horizon

1-year 3-year 5-year 1y4y

2-year avg GDP growth −0.30∗∗∗ −0.14 −0.22∗∗∗

[3.8%]

−0.03

[9.4%] [1.4%] [0.1%]

10-year avg GDP growth −0.31∗∗∗ −0.13 −0.14∗∗ 0.08

[6.9%] [1.1%] [1.5%] [0.5%]

6-10 year avg GDP growth −0.15∗ −0.10 −0.04

[0.1%]

0.12

[1.5%] [0.7%] [1.1%]
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