Optimal monetary policy under menu costs

Daniele Caratelli ¹ Basil Halperin ²

¹Treasury OFR, ²Stanford DEL

January 2025

Textbook benchmark: Tractable-but-unrealistic Calvo friction

► Random and exogenous price stickiness

Textbook benchmark: Tractable-but-unrealistic Calvo friction

► Random and exogenous price stickiness

⇒ Optimal policy: Inflation targeting

[Woodford 2003; Rubbo 2023]

Textbook benchmark: Tractable-but-unrealistic Calvo friction

► Random and exogenous price stickiness

⇒ Optimal policy: Inflation targeting

[Woodford 2003; Rubbo 2023]

Criticism:

- 1. Theoretical critique: Not microfounded
- 2. Empirical critique: State-dependent pricing is a better fit

[Nakamura et al 2018; Cavallo and Rigobon 2016; Alvarez et al 2018; Cavallo et al 2023]

Our contribution: More realistic (less tractable) menu costs

Our contribution: More realistic (less tractable) menu costs

1. Fixed cost of price adjustment

Our contribution: More realistic (less tractable) menu costs

- 1. Fixed cost of price adjustment
- 2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

Our contribution: More realistic (less tractable) menu costs

- 1. Fixed cost of price adjustment
- 2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ Optimal policy: countercyclical inflation after sectoral shocks

Our contribution: More realistic (less tractable) menu costs

- 1. Fixed cost of price adjustment
- 2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ Optimal policy: countercyclical inflation after sectoral shocks

Our contribution: More realistic (less tractable) menu costs

- 1. Fixed cost of price adjustment
- 2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change

⇒ **Optimal policy:** countercyclical inflation after sectoral shocks

1. Stylized analytical model

Our contribution: More realistic (less tractable) menu costs

- 1. Fixed cost of price adjustment
- 2. Multi-sector model with sector-level productivity shocks
 - Motive for relative prices to change
- ⇒ **Optimal policy:** countercyclical inflation after sectoral shocks
 - 1. Stylized analytical model
 - 2. Quantitative model

Contribution:

Contribution:

- 1. Optimal monetary policy with sectors / relative prices
 - ► Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
 - ► Downward nominal wage rigidity

[Guerrieri-Lorenzoni-Straub-Werning 2021]

Contribution:

- 1. Optimal monetary policy with sectors / relative prices
 - ► Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
 - ► Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]
- 2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

- 3. Adam and Weber (2023): menu costs + trending productivities
- \Longrightarrow no direct costs, first-order approximation

Contribution:

- 1. Optimal monetary policy with sectors / relative prices
 - ► Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
 - ► Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]
- 2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

- 3. Adam and Weber (2023): menu costs + trending productivities
- \Longrightarrow no direct costs, first-order approximation
- **4. Karadi, Nakov, Nuno, Pasten, and Thaler (2024):** contemporaneous single-sector, quantitative model

Contribution:

- 1. Optimal monetary policy with sectors / relative prices
 - ► Calvo [Rubbo 2023, Woodford 2003, Aoki 2001, Benigno 2004, Wolman 2011]
 - ► Downward nominal wage rigidity [Guerrieri-Lorenzoni-Straub-Werning 2021]
- 2. Menu costs, assume inflation targeting, solve for optimal inflation target

[Wolman 2011, Nakov-Thomas 2014, Blanco 2021]

- 3. Adam and Weber (2023): menu costs + trending productivities
- \Longrightarrow no direct costs, first-order approximation
- **4. Karadi, Nakov, Nuno, Pasten, and Thaler (2024):** contemporaneous single-sector, quantitative model
- 4. Non-normative menu cost literature

Roadmap

- 1. Baseline model & optimal policy
- 2. Extensions
- 3. Quantitative model
- 4. Comparison to Calvo model
- 5. Conclusion and bigger picture

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ► Each sector is a continuum of firms, bundled with CES technology
- ► Static model (& no linear approximation)

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ► Each sector is a continuum of firms, bundled with CES technology
- ► Static model (& no linear approximation)

Household's problem:

$$\max_{C,N,M} \ln(C) - N + \ln\left(\frac{M}{P}\right)$$
s.t. $PC + M = WN + D + M_{-1} - T$

$$C = \prod_{i=1}^{S} c_i^{1/S}$$

Model setup + household's problem

General setup:

- ▶ Off-the shelf sectoral model with S sectors
- ► Each sector is a continuum of firms, bundled with CES technology
- ► Static model (& no linear approximation)

Household's problem:

$$\max_{C,N,M} \ln(C) - N + \ln\left(\frac{M}{P}\right)$$
s.t. $PC + M = WN + D + M_{-1} - T$

$$C = \prod_{i=1}^{S} c_i^{1/S}$$

Optimality conditions:

$$c_i = \frac{1}{S} \frac{PC}{p_i}$$

$$PC = M$$

$$W = M$$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

► Sectoral productivity shocks: A_i

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i(j) = A_i \cdot n_i(j)$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector

Demand:
$$y_i(j) = y_i \left(\frac{p_i(j)}{p_i}\right)^{-\eta}$$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector



Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$$

Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector

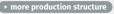
Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau)\right) - W \psi \chi_i$$

Menu cost: adjusting price requires ψ extra units of labor

 $\triangleright \chi_i$: indicator for price change vs. not



Technology: In given sector i, continuum of firms $j \in [0, 1]$ with technology

$$y_i = A_i \cdot n_i$$

- ► Sectoral productivity shocks: A_i
- ► Firms are identical within a sector

Marginal costs: $MC_i = \frac{W}{A_i}$

Profit function:

$$\left(p_i y_i - \frac{W}{A_i} y_i (1 - \tau)\right) - W \psi \chi_i$$

Menu cost: adjusting price requires ψ extra units of labor

 $ightharpoonup \chi_i$: indicator for price change vs. not

 \Longrightarrow **Direct cost of menu costs:** excess disutility of labor

$$N = \sum_{i} n_{i} + \psi \sum_{i} \chi_{i}$$

▶ Other specifications do not affect result

Objective function of sector *i* firm:
$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$$

Objective function of sector *i* firm:
$$\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$$

Optimal reset price: if adjusting, price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

If not adjusting: inherited price p_i^{old}

Objective function of sector *i* firm: $\left(p_i y_i - \frac{W}{A_i} y_i (1-\tau)\right) - W \psi \chi_i$

Optimal reset price: if adjusting, price = nominal marginal cost

$$p_i^* = \frac{W}{A_i}$$

If not adjusting: inherited price p_i^{old}

Inaction region: don't adjust iff $p_i^* = \frac{W}{A_i}$ close to p_i^{old}

Optimal policy after a productivity shock

► Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$

Optimal policy after a productivity shock

- ► Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- ▶ Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

Optimal policy after a productivity shock

- ► Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- ▶ Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

Proposition 1: there exists a threshold level of productivity \overline{A} s.t.:

1. If shock is not too small, $A_1 \ge \overline{A}$, then optimal policy is nominal wage targeting:

$$W = W^{SS}$$

Optimal policy after a productivity shock

- ► Start at steady state: all sectors have $A_i^{ss} = 1 \ \forall i$, so $p_i^{ss} = W^{ss} \equiv 1$
- ▶ Hit sector 1 with a (say) positive productivity shock: $A_1 > 1$

Proposition 1: there exists a threshold level of productivity \overline{A} s.t.:

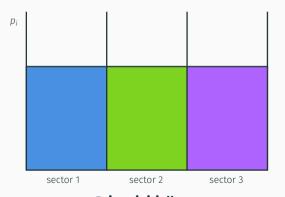
1. If shock is not too small, $A_1 \ge \overline{A}$, then optimal policy is nominal wage targeting:

$$W = W^{SS}$$

2. If shock is small, $A_1 < \overline{A}$, then optimal policy is to ensure no sector adjusts:

$$p_i = p_i^{ss} \ \forall i$$

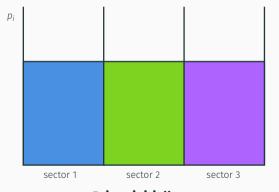
Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Prices initially

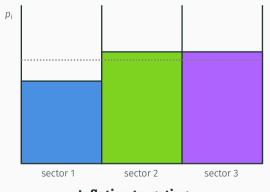
► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\cdot \implies p_1 \downarrow \text{ and } p_k \uparrow$

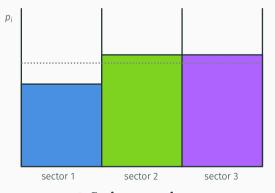
Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Inflation targeting

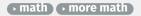
- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - · Constant P
 - $\cdot \implies p_1 \downarrow \text{ and } p_k \uparrow$
 - · ⇒ every sector pays a menu cost

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



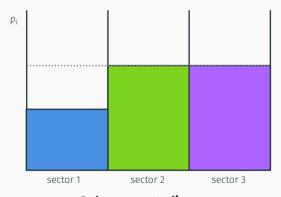
Inflation targeting

$$\mathbb{W}^f - \mathsf{S}\psi$$



- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - · Constant P
 - $\cdot \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant

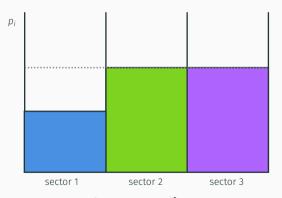
Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Only sector 1 adjusts

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\cdot \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - → only sector 1 pays a menu cost

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$

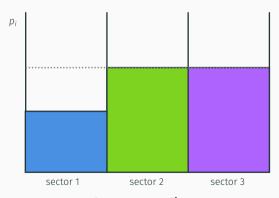


Only sector 1 adjusts

→ math → more math

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - · Constant P
 - $\cdot \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - → every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - $\cdot \implies$ only sector 1 pays a menu cost
 - How to ensure p_k constant?

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



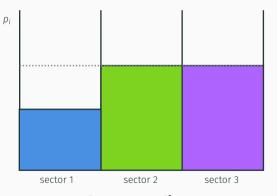
Only sector 1 adjusts

 $\mathbb{W}^f - \psi$

→ math → more math

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\cdot \Longrightarrow p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - $\cdot \Longrightarrow \mathit{only}\ \mathsf{sector}\ \mathsf{1}\ \mathsf{pays}\ \mathsf{a}\ \mathsf{menu}\ \mathsf{cost}$
 - How to ensure p_k constant?
 Stabilize nominal MC of unshocked firms

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



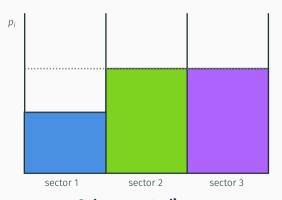
Only sector 1 adjusts

 $\mathbb{W}^f - \psi$

→ math → more math

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - · Constant P
 - $\cdot \implies p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - $\cdot \Longrightarrow \mathit{only} \; \mathsf{sector} \; \mathsf{1} \; \mathsf{pays} \; \mathsf{a} \; \mathsf{menu} \; \mathsf{cost}$
 - How to ensure p_k constant?
 Stable W

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Only sector 1 adjusts

 $\mathbb{W}^f - \psi$

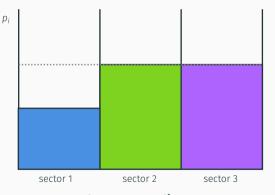
→ math → more math

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\cdot \implies p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - $\cdot \implies$ only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stable W

Observe: in aggregate, Y↑, P↓

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Only sector 1 adjusts

$$\mathbb{W}^f - \psi$$

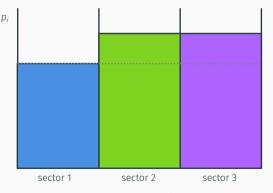
→ math → more math

- ► Sector 1 productivity $A_1 \uparrow$ ⇒ relative price p_1/p_k should fall
- 1. Under inflation targeting:
 - Constant P
 - $\cdot \implies p_1 \downarrow \text{ and } p_k \uparrow$
 - $\cdot \implies$ every sector pays a menu cost
- 2. Under optimal policy:
 - $p_1 \downarrow$, but p_k constant
 - $\cdot \implies$ only sector 1 pays a menu cost
 - How to ensure p_k constant?

Stable W

• Observe: in aggregate, $Y \uparrow, P \downarrow$

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Only sectors *k* adjusts

$$\mathbb{W}^f - (S-1)\psi$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts		
Sector 1 not adjust		

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$\mathbb{W}_{flex} - \psi$
Sector 1 not adjust	$\mathbb{W}_{flex} - (S - 1)\psi$	

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$\mathbb{W}_{flex} - \psi$
Sector 1 not adjust	$\mathbb{W}_{flex} - (S - 1)\psi$	

Lemma 1: If adjusting, only shocked sectors should adjust

$$W_{only 1 adjusts} > W_{all adjust}, W_{only k adjust}$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$\mathbb{W}_{flex} - \psi$
Sector 1 not adjust	$\mathbb{W}_{flex} - (S - 1)\psi$	$-\ln(S-1+1/A_1)-1$

Lemma 1: If adjusting, only shocked sectors should adjust

$$W_{only 1 adjusts} > W_{all adjust}, W_{only k adjust}$$

	Sectors k adjust	Sectors k not adjust
Sector 1 adjusts	$\mathbb{W}_{flex} - S\psi$	$\mathbb{W}_{flex} - \psi$
Sector 1 not adjust	$\mathbb{W}_{flex} - (S - 1)\psi$	$-\ln(S-1+1/A_1)-1$

Lemma 1: If adjusting, only shocked sectors should adjust

$$W_{only 1 adjusts} > W_{all adjust}, W_{only k adjust}$$

Lemma 2: $\exists \overline{A}$ such that

$$W_{only 1 adjusts} > W_{none adjust}$$

iff $A_1 > \overline{A}$. Furthermore, \overline{A} is increasing in ψ .

Interpretation: "looking through" shocks

Example: used cars (2021)

Source: Oxford Economics/BLS

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure frequency of price adjustment
- (2) Build structural model
- (3) \implies calibrate menu costs to fit

Nakamura and Steinsson (2010):

▶ 0.5% of firm revenues

Blanco et al (2022):

► 2.4% of revenues

How large are menu costs?

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.

- (1) Measure frequency of price adjustment
- (2) Build structural model
- (3) \implies calibrate menu costs to fit

Nakamura and Steinsson (2010):

▶ 0.5% of firm revenues

Blanco et al (2022):

► 2.4% of revenues

2. Direct measurement. For *physical* adjustment costs,

Levy et al (1997, QJE): 5 grocery chains

▶ 0.7% revenue

Dutta et al (1999, JMCB): drugstore chain

▶ 0.6% revenue

Zbaracki et al (2003, Restat): mfg

▶ 1.2% revenue

1. Baseline model & optimal policy

2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

1. Any (HOD1) aggregator:

$$C = F(c_1, ..., c_S)$$

2. Potentially DRS production technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with $1/\alpha \in (0, 1]$

3. Any preferences quasilinear in labor: $U(C, \frac{M}{P}) - N$

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

- 1. Any (HOD1) aggregator: $C = F(c_1, ..., c_s)$
- 2. Potentially DRS production technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with $1/\alpha \in (0,1]$
- 3. Any preferences quasilinear in labor: $U\left(C, \frac{M}{P}\right) N$

Nominal MC:

$$MC_{i}(j) = \left[\alpha \frac{W}{A_{i}^{\alpha}} \left(y_{i} p_{i}^{\eta}\right)^{\alpha - 1}\right]^{\theta}$$
$$\theta \equiv \left[1 - \eta(1 - \alpha)\right]^{-1}$$

Generalized model: stabilize nominal MC of unshocked firms

Generalized model:

- 1. Any (HOD1) aggregator: $C = F(c_1, ..., c_s)$
- 2. Potentially DRS production technology: $y_i(j) = A_i n_i(j)^{1/\alpha}$ with $1/\alpha \in (0,1]$
- 3. Any preferences quasilinear in labor: $U(C, \frac{M}{D}) N$

Nominal MC:

$$MC_{i}(j) = \left[\alpha \frac{W}{A_{i}^{\alpha}} \left(y_{i} p_{i}^{\eta}\right)^{\alpha - 1}\right]^{\theta}$$
$$\theta \equiv \left[1 - \eta(1 - \alpha)\right]^{-1}$$

Proposition 1 extended: optimal policy stabilizes **nominal marginal costs of unshocked firms**

$$\Longrightarrow Y \uparrow, P \downarrow$$

"Macro functional forms"

More general example:

1.
$$C = \prod c_i^{1/S}$$

2. DRS production technology:

$$y_i(j) = A_i n_i(j)^{1/\alpha}$$
 with $1/\alpha \in (0,1)$

3. CRRA preferences:

$$\frac{1}{1-\sigma}C^{1-\sigma} + \frac{1}{1-\sigma}\left(\frac{M}{P}\right)^{1-\sigma} - N$$

"Macro functional forms"

More general example:

1.
$$C = \prod c_i^{1/S}$$

2. DRS production technology:

$$y_i(j) = A_i n_i(j)^{1/\alpha}$$
 with $1/\alpha \in (0,1)$

3. CRRA preferences:

$$\frac{1}{1-\sigma}C^{1-\sigma} + \frac{1}{1-\sigma}\left(\frac{M}{P}\right)^{1-\sigma} - N$$

Nominal MC:

$$MC_i(j) = k \frac{W^{\lambda} P^{1-\lambda}}{A_i}$$

$$\lambda \equiv \frac{\sigma + \alpha - 1}{\sigma \alpha}$$

"Macro functional forms"

More general example:

1.
$$C = \prod c_i^{1/S}$$

Nominal MC:

2. DRS production technology:

$$y_i(j) = A_i n_i(j)^{1/\alpha}$$
 with $1/\alpha \in (0,1)$

$$MC_{i}(j) = k \frac{W^{\lambda} P^{1-\lambda}}{A_{i}}$$
$$\lambda \equiv \frac{\sigma + \alpha - 1}{\sigma \alpha}$$

3. CRRA preferences:

$$\frac{1}{1-\sigma}C^{1-\sigma} + \frac{1}{1-\sigma}\left(\frac{M}{P}\right)^{1-\sigma} - N$$

Proposition 1 extended: optimal policy stabilizes **nominal marginal costs of unshocked firms**

 \implies stabilize a weighted average of wages and prices, $W^{\lambda}P^{1-\lambda}$

Production networks: stabilize a weighted average of P and W

Baseline model:

► Production technology:

$$y_i = A_i n_i$$

Roundabout production network:

► Production technology:

$$y_i = A_i n_i^{\beta} I_i^{1-\beta}$$

$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

Production networks: stabilize a weighted average of P and W

Baseline model:

► Production technology:

$$y_i = A_i n_i$$

► Marginal cost:

$$MC_i = \frac{W}{A_i}$$

Roundabout production network:

► Production technology:

$$y_i = A_i n_i^{\beta} I_i^{1-\beta}$$

$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

► Marginal cost:

$$MC_i = \kappa \frac{W^{\beta} P^{1-\beta}}{A_i}$$

Production networks: stabilize a weighted average of P and W

Baseline model:

► Production technology:

$$y_i = A_i n_i$$

► Marginal cost:

$$MC_i = \frac{W}{A_i}$$

► Optimal policy: stabilize nominal MC of unshocked sectors: stabilize W

Roundabout production network:

► Production technology:

$$y_i = A_i n_i^{\beta} I_i^{1-\beta}$$

$$I_i = \prod_{k=1}^{S} I_i(k)^{1/S}$$

► Marginal cost:

$$MC_i = \kappa \frac{W^{\beta} P^{1-\beta}}{A_i}$$

► Optimal policy: stabilize nominal MC of unshocked sectors: stabilize $W^{\beta}P^{1-\beta}$

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = ... = A_S \equiv A$.

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = ... = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = ... = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proof idea:

► Relative prices don't need to change

Proposition 3: Consider any shock not affecting relative prices, e.g. a perfectly uniform shock: $A_1 = ... = A_S \equiv A$. Then optimal policy is to stabilize *inflation*.

Proof idea:

- ► Relative prices don't need to change
- ► Stable prices thus guarantee:
 - 1. Correct relative prices
 - 2. Zero direct costs

Additional extensions

- 1. Heterogeneity across sectors: a monetary "least-cost avoider" principal
- 2. Optimal policy is not about selection effects: a CalvoPlus model + a Bertrand menu cost model

▶ more

3. Under sticky prices *and* sticky wages due to menu costs, optimal policy still stabilizes *W*;

- 1. Baseline model & optimal policy
- 2. Extensions

3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Quantitative model: setup

Does W target dominate P target in a dynamic **quantitative model**?

Household: dynamic problem

$$\begin{split} \max_{\{C_t, N_t, B_t, M_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma}}{1-\gamma} - \omega \frac{N_t^{1+\varphi}}{1+\varphi} + \ln\left(\frac{M_t}{P_t}\right) \right] \\ \text{s.t.} \qquad P_t C_t + B_t + M_t \leq R_t B_{t-1} + W_t N_t + M_{t-1} + D_t - T_t \end{split}$$

Quantitative model: intermediate firms

Intermediate firms: idiosyncratic shocks, Calvo+ price setting

$$\max_{p_{it}(j),\chi_{it}(j)} \qquad \sum_{t=0}^{\infty} \mathbb{E}\left[\frac{1}{R^t P_t} \left\{p_{it}(j) y_{it}(j) - W_t n_{it}(j) (1-\tau) - \chi_{it}(j) \psi W_t\right\}\right]$$
s.t.
$$y_{it}(j) = A_{it} a_{it}(j) n_{it}(j)^{\alpha}$$

$$\psi_{it}(j) = \begin{cases} \psi & \text{w/ prob. } 1-\nu \\ 0 & \text{otherwise} \end{cases}$$

Productivity distribution: mixture between AR(1) and uniform (fat tail)

$$\log (a_{it}(j)) = \begin{cases} \rho_{idio} \log (a_{it-1}(j)) + \varepsilon_{it}^{idio}(j) & \text{with prob. } 1 - \varsigma \\ \mathcal{U} \left[-\log (\underline{a}), \log (\overline{a}) \right] & \text{with prob. } \varsigma \end{cases}$$

Calibration

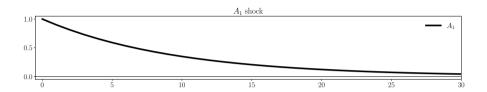
(1) drawn from literature vs.

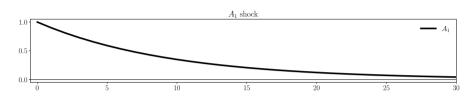
	Parameter (monthly frequency)	Value	Target
β	Discount factor	0.99835	2% annual interest rate
ω	Disutility of labor	1	standard
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)
γ	Inverse EIS	2	standard
S	Number of sectors	6	Nakamura and Steinsson (2010)
η	Elasticity of subst. between sectors	5	standard value
α	Returns to scale	0.6	standard value

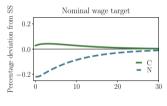
Calibration

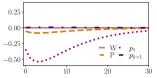
(1) drawn from literature vs. (2) calibrated by SMM targeting

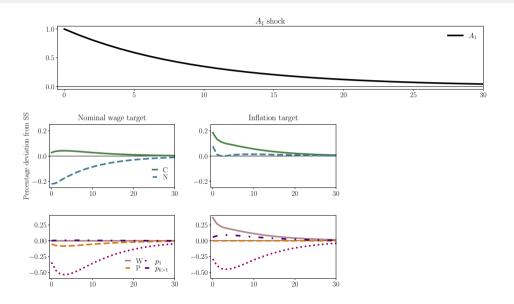
	Parameter (monthly frequency)	Value	Target	
β	Discount factor	0.99835	2% annual interest rate	_
ω	Disutility of labor	1	standard	
φ	Inverse Frisch elasticity	0	Golosov and Lucas (2007)	
γ	Inverse EIS	2	standard	
S	Number of sectors	6	Nakamura and Steinsson (2010)	_
η	Elasticity of subst. between sectors	5	standard value	
α	Returns to scale	0.6	standard value	
σ_{idio}	Standard deviation of idio. shocks	0.058	menu cost expenditure / revenue 1.0 (1.1%)	_
hoidio	Persistence of idio. shocks	0.992	share of price changers 9.7 (10.1%)	
ψ	Menu cost	0.1	median absolute price change 8.3 (7.9%)	
u	Calvo parameter	0.09	Q1 absolute price change 4.2 (5.6%)	
ς	Fat tail parameter	0.001	Q3 absolute price change 12.0 (12.5%)	
			kurtosis of price changes 5.4 (5.1)	

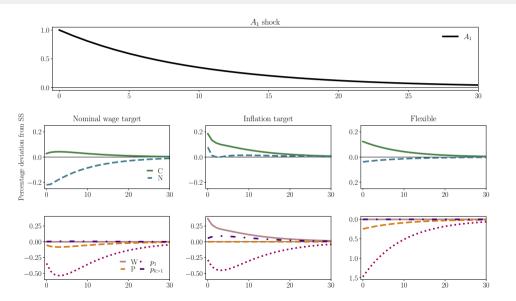


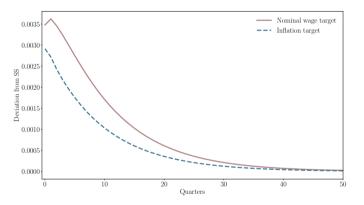


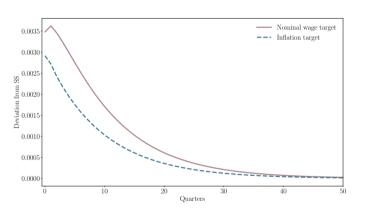




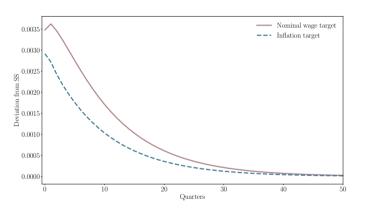






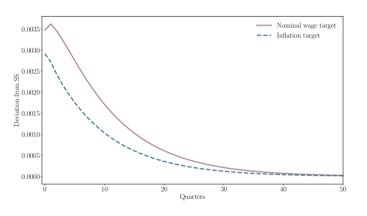


Consider welfare under P targeting



- Consider welfare under P targeting
- 2. How much extra *C* is needed to match welfare under wage targeting?

$$\sum_{t} \beta^{t} U \left((1 + \lambda) C_{t}^{P}, N_{t}^{P} \right)$$
$$= \sum_{t} \beta^{t} U \left(C_{t}^{W}, N_{t}^{W} \right)$$



- Consider welfare under P targeting
- 2. How much extra *C* is needed to match welfare under wage targeting?

$$\sum_{t} \beta^{t} U \left((1 + \lambda) C_{t}^{P}, N_{t}^{P} \right)$$
$$= \sum_{t} \beta^{t} U \left(C_{t}^{W}, N_{t}^{W} \right)$$

3. Require consumption to be permanently $\lambda = 0.008\%$, for *P* targeting to match *W* targeting

Welfare over the business cycle

1. Shock sector productivities according to

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_A$$

2. $\rho_A = 0.962$ $\varepsilon_A \sim \mathcal{N}(0, 0.003) \rightarrow \text{match U.S. output dynamics } 1984-2019$

[Garin, Pries, and Sims 2018]

3. Welfare gain of nominal wage targeting over inflation targeting: $\lambda = 0.32\%$

Welfare over the business cycle

1. Shock sector productivities according to

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_A$$

2. $\rho_{\rm A}=0.962$ $\varepsilon_{\rm A}\sim\mathcal{N}(0,0.003)\to{\rm match~U.S.}$ output dynamics 1984-2019

[Garin, Pries, and Sims 2018]

- 3. Welfare gain of nominal wage targeting over inflation targeting: $\lambda=0.32\%$
- ⇒ Nominal wage targeting dominates inflation targeting in quantitative model

- 1. Baseline model & optimal policy
- 2. Extensions
- 3. Quantitative model

4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

► Multisector Calvo optimal policy: inflation targeting, P = P^{SS}. Why?

[Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

▶ Multisector Calvo optimal policy: inflation targeting, $P = P^{ss}$. Why? [Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

► Menu costs are *nonconvex*:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

► Multisector Calvo optimal policy: inflation targeting, *P* = *P*^{ss}. Why? [Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

► Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{SS}\}$$

► Contrast with *convex* menu costs: e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

► Multisector Calvo optimal policy: inflation targeting, *P* = *P*^{ss}. Why? [Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

► Menu costs are nonconvex:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{SS}\}$$

► Contrast with *convex* menu costs: e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

► Multisector Calvo optimal policy: inflation targeting, *P* = *P*^{ss}. Why? [Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

► Menu costs are *nonconvex*:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{ss}\}$$

► Contrast with convex menu costs: e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

► Nonconvex labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{SS}\}$$

Rotemberg labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

► Multisector Calvo optimal policy: inflation targeting, *P* = *P*^{ss}. Why? [Woodford; Rubbo; Aoki; cf Guerrieri-Lorenzoni-Straub-Werning]

► Menu costs are *nonconvex*:

$$\psi \cdot \mathbb{I}\{p_i \neq p_i^{SS}\}$$

► Contrast with convex menu costs: e.g.,

$$\psi \cdot (p_i - p_i^{ss})^2$$

► Nonconvex labor market clearing:

$$N = \sum n_i + \psi \sum \mathbb{I}\{p_i \neq p_i^{SS}\}$$

Rotemberg labor market clearing:

$$N = \sum n_i + \psi \sum (p_i - p_i^{ss})^2$$

Convex costs \Longrightarrow smooth price changes across sectors

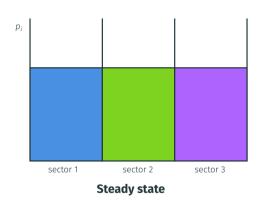
Comparison with Calvo model

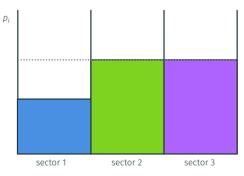
Calvo: Likewise, welfare cost of price dispersion is convex:

$$\Delta \equiv \sum_{i=1}^{S} \int_{0}^{1} \left[\frac{p_{i}(j)}{p_{i}} \right]^{-\eta} dj$$

where $\eta > 1$ is the within-sector elasticity of substitution

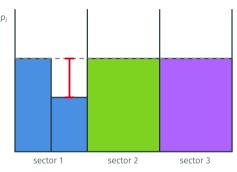
Calvo diagram: shocking sector-1 productivity





Flexible prices, after shock

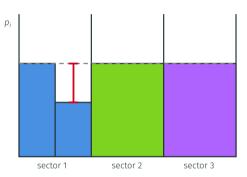
Calvo diagram: shocking sector-1 productivity



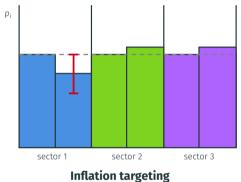
Nominal wage targeting under Calvo

Lots of price dispersion: only one sector

Calvo diagram: shocking sector-1 productivity



Nominal wage targeting under Calvo



Inflation targeting under Calvo

Lots of price dispersion: only one sector

Little price dispersion: all sectors

- 1. Baseline model & optimal policy
- 2. Extensions
- 3. Quantitative model
- 4. Comparison to Calvo model

5. Conclusion and bigger picture

Appendix

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of <u>the nominal friction</u> added to an underlying frictionless RBC model

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

► RBC + cash = Friedman rule

► RBC + Calvo = inflation targeting

► RBC + menu costs = countercyclical inflation

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of the nominal friction added to an underlying frictionless RBC model

► RBC + cash

= Friedman rule

► RBC + Calvo

- = inflation targeting
- ► RBC + menu costs
- = countercyclical inflation

► RBC + ...

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of <u>the nominal friction</u> added to an underlying frictionless RBC model

"The friction zoo": Dozens of "optimal" monetary policy papers, each differing in frictions added. What should a central bank actually do?

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of <u>the nominal friction</u> added to an underlying frictionless RBC model

"The friction zoo": Dozens of "optimal" monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: countercyclical inflation is *robustly* **optimal**: across four 'classes' of model

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of <u>the nominal friction</u> added to an underlying frictionless RBC model

"The friction zoo": Dozens of "optimal" monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: countercyclical inflation is *robustly* **optimal**: across four 'classes' of model

- 1. Sticky wages
- 2. Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
- 3. Information frictions: Angeletos and La'O (2020)

Fundamental principle of optimal monetary policy: Optimal policy is *entirely* a function of <u>the nominal friction</u> added to an underlying frictionless RBC model

"The friction zoo": Dozens of "optimal" monetary policy papers, each differing in frictions added. What should a central bank actually do?

Claim: countercyclical inflation is *robustly* **optimal**: across four 'classes' of model

- 1. Sticky wages
- 2. Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
- 3. Information frictions: Angeletos and La'O (2020)
- 4. Sticky prices [new]: Caratelli and Halperin (2024)

Summary

In baseline menu cost model, **inflation should be countercyclical** after sectoral shocks

Rationale:

- ► Inflation targeting **forces firms to adjust unnecessarily**, which is costly with menu costs
- ► Nominal wage targeting does not

Summary

In baseline menu cost model, **inflation should be countercyclical** after sectoral shocks

Rationale:

- ► Inflation targeting **forces firms to adjust unnecessarily**, which is costly with menu costs
- Nominal wage targeting does not

Future work:

- ► Convexity of menu costs
- ► Better direct measurement of menu costs
- "Unified theory of optimal monetary policy"?

- 1. Baseline model & optimal policy
- 2. Extensions
- 3. Quantitative model
- 4. Comparison to Calvo model
- 5. Conclusion and bigger picture

Appendix

Equilibrium characterization Sectoral packagers:

→ Back

 $y_i = \left[\int_0^1 y_i(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{-\eta}{\eta-1}}$

$$y_i(j) = y_i \left[\frac{p_i(j)}{p_i} \right]^{-\eta}$$
$$p_i = \left[\int_0^1 p_i(j)^{1-\eta} dj \right]^{\frac{1}{1-\eta}}$$

$$\int_0^1 p_i(j)^{1-\eta} dj \bigg]^{1-\overline{\eta}}$$
ducers:

Intermediate producers:

$$v_i(i) = A_i n_i(i)$$

 $\chi_i = \mathbb{I}\left\{\frac{1}{\eta} > y_i \left[\frac{p_i^{\text{old}}}{p_i}\right]^{-\eta} \left(p_i^{\text{old}} - \frac{W}{A_i} \frac{\eta - 1}{\eta}\right)\right\}$

$$(1-\tau)\frac{W}{T}$$

$$y_i(j) = A_i n_i(j)$$
 $-T + (M_i(j))^{\text{opt}} = \frac{\eta}{\eta - 1} (1 - \tau) \frac{W}{A_i}$ Market clearing:

Government:

Household:

$$1 - \tau = \frac{\eta - 1}{\eta}$$
$$-T + (M - M_{-1}) = \tau W \sum_{i} n_{i}$$

$$1- au$$

M = PCM = W

 $C = \prod C_i^{1/S}$ $P = S \prod p_i^{1/S}$

$$1 - \tau = \frac{\eta - 1}{\eta}$$

 $N = \sum n_i + \psi \sum \chi_i$

$$=\frac{1}{\eta}$$

$$=\frac{\eta}{\eta}$$

$$-\frac{\eta}{\eta}$$

Production structure

Final goods demand:

$$C = \prod_{i} y_i^{1/S}$$

$$P = S \prod_{i} p_i^{1/S}$$

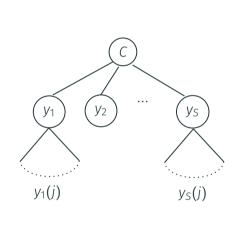
$$y_i = \frac{1}{S} \frac{PC}{p_i}$$

Sectoral packagers (competitive):

$$y_{i} = \left[\int_{0}^{1} y_{i}(j)^{\frac{\eta-1}{\eta}} dj \right]^{\frac{\eta}{\eta-1}}$$

$$y_{i}(j) = y_{i} \left[\frac{p_{i}(j)}{p_{i}} \right]^{-\eta}$$

$$p_{i} = \left[\int_{0}^{1} p_{i}(j)^{1-\eta} dj \right]^{\frac{1}{1-\eta}}$$



Formally: Social planner's problem

$$\begin{split} \max_{X \in \{A,B,C,D\}} \mathbb{U}^X \\ \mathbb{U}^A &= \left\{ \begin{array}{ll} \max_{S.t.} & \ln[M] - M\left[S - 1 + 1/\gamma\right] \\ \text{s.t.} & \min(\gamma \lambda_1, \lambda_2) \leq M \leq \max(\gamma \lambda_1, \lambda_2) \end{array} \right\} \\ \mathbb{U}^B &= \left\{ \ln\left[\frac{1}{S}\gamma^{1/S}\right] - 1 - \psi\right\} \\ \mathbb{U}^C &= \left\{ \begin{array}{ll} \max_{M} & \ln\left[\left(\frac{\gamma}{S}\right)^{\frac{1}{S}} \cdot M^{\frac{S-1}{S}}\right] - \left[(S - 1)M + \frac{1}{S}\right] - \frac{1}{S}\psi \\ \text{s.t.} & \lambda_1 < M < \min(\gamma \lambda_1, \lambda_2) \end{array} \right\} \\ \mathbb{U}^D &= \left\{ \begin{array}{ll} \max_{M} & \ln\left[S^{\frac{1-S}{S}}M^{\frac{1}{S}}\right] - \left[\frac{S-1}{S} + \frac{M}{\gamma}\right] - \frac{S-1}{S}\psi \\ \text{s.t.} & \max(\gamma \lambda_1, \lambda_2) < M < \gamma \lambda_2 \end{array} \right\} \\ \text{where } \lambda_1 &= \frac{1}{S}\left(1 - \sqrt{\psi}\right), \quad \lambda_2 &= \frac{1}{S}\left(1 + \sqrt{\psi}\right) \end{split}$$

Adjustment externalities

▶ back

Example: Social planner's constrained problem for "neither adjust"

$$\max_{M} U(C(M), N(M))$$

$$D_h^{\text{adjust}} < D_h^{\text{no adjust}}$$

s.t.
$$D_1^{\text{adjust}} < D_1^{\text{no adjust}}$$

$$\Longrightarrow M_{\rm unconstrained}^*$$

Social planner's unconstrained problem: maximize (1), without constraints $\implies M^*_{constrained}$

Adjustment externality: $M_{\text{unconstrained}}^* \neq M_{\text{constrained}}^*$

Alternative menu cost formulations

Labor costs: Welfare mechanism is *higher labor*

$$profits_i - W\psi \cdot \chi_i$$

$$\implies N = \sum n_i + \psi \sum \chi_i$$

Real resource cost: Welfare mechanism is *lower consumption*

profits_i ·
$$(1 - \psi \cdot \chi_i)$$

$$\Longrightarrow C = Y \left(1 - \psi \sum_{i} \chi_{i} \right)$$

Direct utility cost: Welfare mechanism is *direct*

utility
$$-\psi \cdot \sum \chi_i$$

More Calvo math

Nominal wage targeting:

$$\hat{W} = 0$$

$$\hat{p}_1(A) = -\hat{\gamma}$$

$$\hat{p}_k(A)=0$$

$$\hat{P} = -\frac{1}{5}(1-\theta)\hat{\gamma}$$

$$\hat{C} = \frac{1}{S}(1 - \theta)\hat{\gamma}$$

$$\hat{N} = -\frac{1}{5}\theta\hat{\gamma}$$

Inflation targeting:

$$\hat{W} = \frac{\hat{\gamma}}{5}$$

$$\hat{p}_1(A) = -\hat{\gamma} + \frac{1}{S}\hat{\gamma}$$

$$\hat{p}_k(A) = \frac{\hat{\gamma}}{S}$$

$$\hat{P} = 0$$

$$\hat{C} = \frac{\hat{C}^f}{S} = \frac{\hat{\gamma}}{S}$$

$$\hat{N} = \hat{N}^f = 0$$

Sticky wages: monopsony

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{VV}{A_1}$$
$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- ► p₁ adjusts
- ▶ W stabilized, so p_k doesn't have to change

Sticky wages: monopsony

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$
$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- ► p₁ adjusts
- ► W stabilized, so p_k doesn't have to change

Monopsony sticky wage model:

homogeneous output + differentiated labor

$$P = \frac{W_1}{A_1}$$

$$P = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

► P adjust, so $W_1 = W_k$ doesn't have to adjust

Sticky wages: monopsony

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$
$$p_k = \frac{W}{A_k}$$

With shock to A_1 , want:

- ▶ p₁ adjusts
- ► W stabilized, so p_k doesn't have to change

Monopsony sticky wage model:

homogeneous output + differentiated labor

$$P = \frac{W_1}{A_1}$$

$$P = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

► P adjust, so $W_1 = W_k$ doesn't have to adjust

Sticky wages

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$
$$p_k = \frac{W}{A_k}$$

With shock to A₁, want:

- ► p₁ adjusts
- ► W stabilized, so p_k doesn't have to change

Sticky wages

Sticky prices model:

differentiated output + homogenous labor

$$p_1 = \frac{W}{A_1}$$
$$p_k = \frac{W}{A_k}$$

With shock to A₁, want:

- ► p₁ adjusts
- ► W stabilized, so p_k doesn't have to change

Standard sticky wage model:differentiated output + *differentiated*labor

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

With shock to A_1 , want:

- ▶ p_1 adjusts, so $W_1 = W_k = p_k$ doesn't have to adjust
- ▶ Wages, $W_1 = W_b$, stabilized

- ▶ Suppose ψ_P if any *price* p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

- ▶ Suppose ψ_P if any *price* p_i changes
- ▶ Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock:
$$A_1 \uparrow$$

- ▶ Suppose ψ_P if any *price* p_i changes
- ► Suppose ψ_W if any wage W_i changes

- 1. **Option 1:** p_1 adjusts
 - ψ_P

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any *price* p_i changes
- ► Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock: $A_1 \uparrow$

- 1. **Option 1:** p_1 adjusts
 - ψ_P
- 2. **Option 2:** W_1 adjusts

$$\Longrightarrow W_k$$
 adjusts $\Longrightarrow p_k$ adjusts

•
$$(S-1)\psi_P + S\psi_W$$

- ▶ Suppose ψ_P if any *price* p_i changes
- ► Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

1. **Option 1:** *p*₁ adjusts

•
$$\psi_P$$

2. **Option 2:** W_1 adjusts $\Longrightarrow W_k$ adjusts $\Longrightarrow p_k$ adjusts $\cdot (S-1)\psi_P + S\psi_W$

3. **Option 3:** p_k adjusts $\implies W_k$ adjusts $(S-1)\psi_W$ and $W_1 \neq W_k$

Shock: $A_1 \uparrow$

- ▶ Suppose ψ_P if any *price* p_i changes
- ► Suppose ψ_W if any wage W_i changes

Model:

$$p_1 = \frac{W_1}{A_1}$$

$$p_k = \frac{W_k}{A_k}$$

$$W_1 = W_k$$

Shock:
$$A_1 \uparrow$$

1. **Option 1:** p_1 adjusts

•
$$\psi_P$$

2. **Option 2:** W_1 adjusts

$$\Longrightarrow W_k$$
 adjusts $\Longrightarrow p_k$ adjusts

$$\cdot (S-1)\psi_P + S\psi_W$$

3. **Option 3:** p_k adjusts

$$\implies W_k$$
 adjusts

•
$$(S-1)\psi_W$$
 and $W_1 \neq W_R$

Optimal policy: p_1 adjusts, $W = W_1 = W_k$ stable

Consider two model variants:

1. CalvoPlus model: Random fraction ν of firms allowed to change prices for free, dampening selection effects

Consider two model variants:

- **1. CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects
- ightharpoonup Statement of proposition 1 unchanged, with \overline{A} reduced (and decreasing in ν)

Consider two model variants:

- **1. CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects
- ightharpoonup Statement of proposition 1 unchanged, with \overline{A} reduced (and decreasing in ν)
- 2. Menu cost model without any selection effects:
 - · Firms always set price equal to ideal price
 - Must pay a menu cost if doing so rquires change in price

Consider two model variants:

- **1. CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects
- ightharpoonup Statement of proposition 1 unchanged, with \overline{A} reduced (and decreasing in ν)
- 2. Menu cost model without any selection effects:
 - · Firms always set price equal to ideal price
 - Must pay a menu cost if doing so rquires change in price
- ightharpoonup \Longrightarrow Optimal policy unchanged, with $\overline{A}=0$.

Consider two model variants:

- **1. CalvoPlus model:** Random fraction ν of firms allowed to change prices for free, dampening selection effects
- ightharpoonup Statement of proposition 1 unchanged, with \overline{A} reduced (and decreasing in ν)
- 2. Menu cost model without any selection effects:
 - · Firms always set price equal to ideal price
 - Must pay a menu cost if doing so rquires change in price
- ightharpoonup \Longrightarrow Optimal policy unchanged, with $\overline{A}=0$.

Selection effects show up in \overline{A}

Heterogeneity: a monetary "least-cost avoider principle"

Proposition 5: Suppose sector i has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1<\sum_{k>1}S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \overline{A} .

► *Proof*: Follows exactly as in proof of proposition 1.

Heterogeneity: a monetary "least-cost avoider principle"

Proposition 5: Suppose sector *i* has mass S_i and menu cost ψ_i . Suppose further

$$S_1\psi_1<\sum_{k>1}S_k\psi_k.$$

Then optimal policy is exactly as in proposition 1, modulo changes in \overline{A} .

▶ *Proof*: Follows exactly as in proof of proposition 1.

Interpretation 1: monetary "least-cost avoider principle"

Interpretation 2: "stabilizing the stickiest price"

Multiple shocks: general case

Proposition 7: Consider an arbitrary set of productivity shocks to the baseline model, $\{A_1, ..., A_S\}$.

- 1. Conditional on sectors $\Omega \subseteq \{1,...,S\}$ adjusting, optimal policy is given by setting $M = M_{\Omega}^* \equiv \frac{S \omega}{\sum_{i \notin \Omega} \frac{1}{h_i}}$, where $\omega \equiv |\Omega|$.
- 2. The optimal set of sectors that should adjust, Ω^* , is given by comparing welfare under the various possibilities for Ω , using \mathbb{W}^*_{Ω} defined in the paper.
- 3. Nominal wage targeting is exactly optimal if the set of sectors which should not adjust are unshocked: $A_i = 1 \ \forall i \notin \Omega^*$.

Multiple shocks

Proposition 6: Suppose:

1. Some strict subset $\Omega \subset \{1, ..., S\}$ of sectors is shocked, with "heterogeneous enough" $A_i \neq 1$ for all shocked sectors.

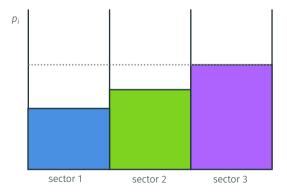
Multiple shocks

Proposition 6: Suppose:

1. Some strict subset $\Omega \subset \{1, ..., S\}$ of sectors is shocked, with "heterogeneous enough" $A_i \neq 1$ for all shocked sectors.

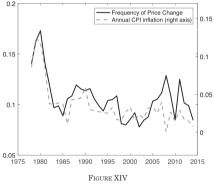
Then optimal policy sets $W = W^{ss}$.

Recall:
$$p_i^* = MC_i = \frac{W}{A_i}$$



Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow



Frequency of Price Change in U.S. Data

Figure 3: Nakamura et al (2018)

Calvo/TDP models: frequency of price adjustment is exogenous to inflation **Menu cost models:** frequency of price adjustment ↑ if inflation ↑

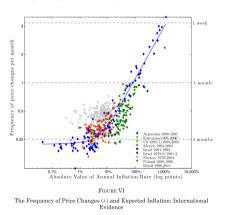


Figure 3: Alvarez et al (2018)

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment \uparrow if inflation \uparrow

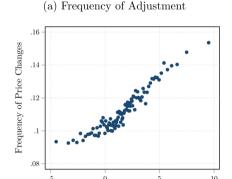


Figure 3: Blanco et al (2022)

Sectoral Inflation

Calvo/TDP models: frequency of price adjustment is exogenous to inflation

Menu cost models: frequency of price adjustment ↑ if inflation ↑

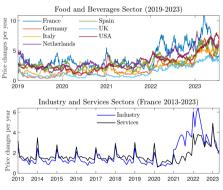
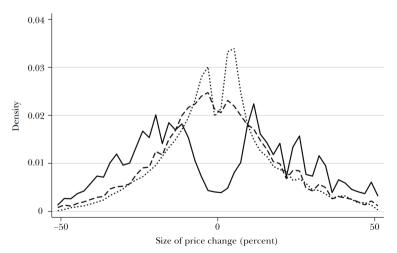


Figure 3: Cavallo et al (2023)

Evidence of inaction regions

 $\label{eq:Figure 8} \label{Figure 8}$ The Distribution of the Size of Price Changes in the United States



Background: Why does monetary policy

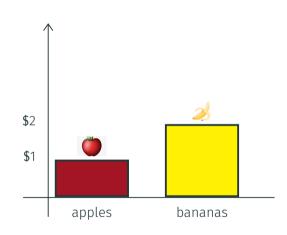
matter?

Background: Why does monetary policy matter?

Benchmark: monetary policy doesn't matter

Background: Why does monetary policy matter?

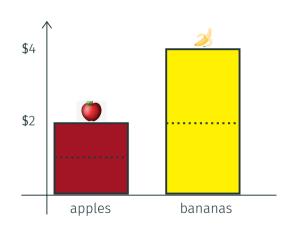
Benchmark: monetary policy doesn't matter



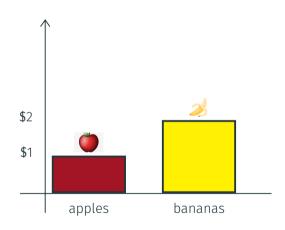
Background: Why does monetary policy matter?

Benchmark: monetary policy doesn't matter

- ► Money supply doubles
 - \implies all prices double
 - ⇒ nothing real affected by monetary policy

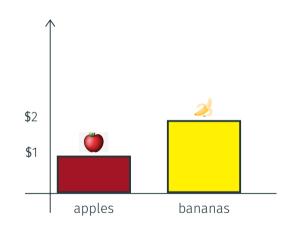


Background: Why does monetary policy matter?



Background: Why does monetary policy matter?

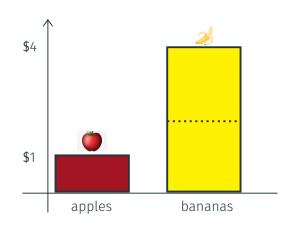
Prices are sticky



Background: Why does monetary policy matter?

Prices are sticky

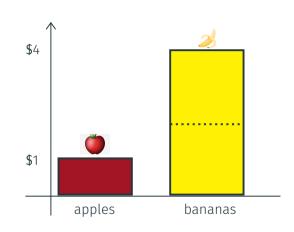
- ► Money supply doubles
 - ⇒ some prices are stuck
 - → distorted relative prices



Background: Why does monetary policy matter?

Prices are sticky

- ► Money supply doubles
 - ⇒ some prices are stuck
 - \implies **distorted** relative prices
- ► Large empirical literature



The welfare loss of inflation targeting

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$. Then:

- Inflation targeting requires all sectors adjust their prices

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (\mathsf{S} - \mathsf{1}) \psi$$

The welfare loss of inflation targeting

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$. Then:

- Inflation targeting requires all sectors adjust their prices

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (\mathsf{S} - \mathsf{1}) \underline{\psi}$$

What are menu costs?

Physical adjustment costs. Baseline interpretation.

The welfare loss of inflation targeting

"Inflation targeting": $P = P^{ss}$ (while having correct relative prices)

Proposition 2: Suppose $A_1 > \overline{A}$. Then:

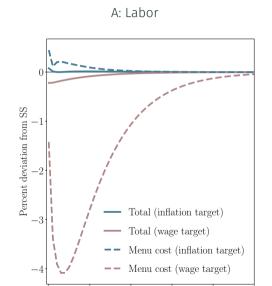
- Inflation targeting requires all sectors adjust their prices
- 2. Welfare loss from inflation targeting∞ size of menu costs

$$\mathbb{W}^* - \mathbb{W}^{\mathsf{IT}} = (\mathsf{S} - \mathsf{1}) \psi$$

What are menu costs?

- Physical adjustment costs. Baseline interpretation.
- Information costs. Fixed costs of information acquisition / processing.
 - · Results unchanged
- Behavioral costs. Consumer distaste for price changes.
 - · Results unchanged

Additional MIT shock figures



B: Real menu cost expenditure

