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Abstract

AI labs are increasingly using AI itself to accelerate AI research, creating a feed-
back loop that could potentially lead to an “intelligence explosion”. We develop
a general semi-endogenous growth model with an innovation network, where re-
search and automation in one sector increases the productivity of research in other
sectors, andderive a clean analytical condition underwhich growth becomes super-
exponential (“explosive”). The key intuition is that automation of research both off-
sets diminishing returns to research and increases cross-sectoral research spillovers,
making explosive growth more likely. Applying this model to a calibrated, AI-
integrated economy, we demonstrate that the growth effects of automation may be
slow initially but compound rapidly. In our benchmark calibration, the level of au-
tomation needed to double the long-run growth rate already achieveswell over half
of the automation level needed to generate explosive growth.

∗Forethought: tom@forethought.org
†University of Virginia: basilh@virginia.edu
‡Columbia University: twh2125@columbia.edu
§University of Virginia and EconTAI, Brookings, NBER, and CEPR: econtai@virginia.edu

We thank Dan Carey, Philip Trammell, and participants at the Oxford Global Priorities Workshop for
helpful comments and discussion.

https://tomdavidson-ai.github.io/
https://basilhalperin.com/
https://thomas-houlden.com/
https://korinek.com/


1 Introduction

“Advanced AI is interesting for many reasons, but perhaps nothing is quite as sig-
nificant as the fact that we can use it to do faster AI research.” (Altman, 2025)

AI has the potential to automate many different kinds of work: customer support,
coding, marketing, and many other tasks. However, a widespread belief among lead-
ing AI researchers is that automation of AI research itself in particular will have a trans-
formative economic impact. Central to this thesis is the argument that such recursive
self-improvement – where AI systems become increasingly capable of designing and im-
proving themselves – creates a feedback loop leading to an “intelligence explosion” and
rapid economic growth (Good, 1966, Yudkowsky, 2013). OpenAI bluntly declares its
goal of developing such technology “by March of 2028” (OpenAI, 2025).

Economists have traditionally been skeptical about the possibility of explosive growth
from recursive self-improvement, pointing to two obstacles:

1. Diminishing returns. A self-improving process may achieve hyperbolic growth
(“explode”) – but, contra Good (1966), such a process does not necessarily ex-
plode. Whether or not a recursively self-improving process explodes depends
critically on the strength of diminishing returns. Formally, a process with a pos-
itive feedback loop dy

dt
= y1−β will not explode if there are diminishing returns,

i.e. if β ≥ 0. Intuitively, a self-improving AI may “pick all the low hanging fruit
first” and find it increasingly difficult to make algorithmic progress, and as a re-
sult progressmay be subexponential or even stagnate. In the economics literature,
this corresponds to models where “ideas get harder to find” (Bloom et al., 2020).

2. Bottlenecks. Even if one process in the economy achieves explosive growth, this
does not necessitate that aggregate growth explodes: progress in one sector may
be bottlenecked by slow progress in other sectors (Aghion, Jones and Jones, 2019,
Jones, 2025, Jones and Tonetti, 2025). Intuitively, even if AI was capable of pro-
ducing infinite left shoes, “total shoe output” would still be bottlenecked by pro-
duction of right shoes. Formally, this is captured by complementarity: in its most
extreme form, total output is the minimum of two components, y = min{y1, y2}.

This paper. In this paper, we set aside the issue of bottlenecks and study the effect
of automating AI R&D on economic growth by focusing on how such automation will
offset diminishing returns in research – potentially even eliminating diminishing returns
– by creating and amplifying feedback loops.
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Webegin bywritingdowna fully general extension to the canonical semi-endogenous
growth model, which may be of independent interest to the growth literature away
from AI. The model has three key features, each of which is applicable to the economy
more generally but is of particular importance in our setting.
(1) “Technological feedback loops” across an innovation network. In the canonical
model, there is one research sector. Our model features a network of heterogeneous
research sectors, where innovations in one sector spill over to increase the rate of inno-
vation in other sectors (Liu and Ma, 2024, Ngai and Samaniego, 2011). Such spillovers
are important for capturing, for example, the feedback loop between better software
and better hardware: better computer chips allow for OpenAI to design better AI mod-
els, while better AI models in turn are used to help to design yet better computer chips
(Mirhoseini et al., 2021), and so on.
(2) “Economic feedback loops”. Economic feedback loops refer to the channel where
higher output is transformed back into a driver of further economic growth. The classic
example is capital accumulation: higher output leads to more savings and investment,
which increases the capital stock, which produces yet more output, and so on.

In our setting, economic feedback loops are particularly important in how they inter-
act with technological feedback loops. This captures the idea that AI-induced techno-
logical progress increases aggregate GDP, which is necessary to fund further AI R&D
investment. For example, the all-in cost of building frontier AI models has grown
roughly by a factor of 10 every two years continuously for the last six years (Cottier
et al., 2024, Whitfill, Snodin and Becker, 2025, Nesov, 2025). If this rate were to con-
tinue, the cost of building one individual frontier model in 2030 would be in excess of
$1 trillion. Such investment growth seems unlikely to continue – unless AI progress
itself can raise total output and therefore the quantity of available resources for AI in-
vestment.
(3) Automation. We introduce the idea of automation of the ideas production func-
tion (Aghion, Jones and Jones, 2019) into a network context, demonstrating how au-
tomation in one research sector spills through the innovation network.

Analytical insights. The general model produces simple analytical conditions under
which technological and economic feedback loops give rise to balanced or explosive
growth. It also provides several broad, interpretable insights.
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• Technological feedback loops – spillovers across research sectors – directly off-
set diminishing returns. In other words, they reduce the degree to which ideas
get harder to find. If such spillovers are improperly ignored, a system may be
estimated to be non-explosive when in reality spillovers from other sectors may
tip the system into explosive dynamics. More prosaically, the recognition of the
existence of the innovation network affects estimation of canonical ideas-getting-
harder-to-find parameters by sector.

• Automation creates economic feedback loops, therefore effectively offsetting di-
minishing returns. Automation means that a task which was previously per-
formed by human labor is instead performed by machines, i.e. capital. Human
labor does not have an economic feedback loop in the modern era: higher GDP
does not result in a higher population. On the other hand, machines have an eco-
nomic feedback loop: higher GDP results in the construction of more machines.
Thus, replacing human labor with capital offsets diminishing returns by creating
a new feedback loop.

• The interaction between technological and economic feedback loops amplifies
each. This is the idea that AI research results in higher GDP, which helps fund
further investment in AI research.

Calibrated application: AI automation with software & hardware feedback loops.
We apply the general framework to study an AI economy, modeled to match key fea-
tures of modern AI development, to analyze the titular question of how automation of
AI research affects economic growth. While the model is rich and complex, it can be
studied analytically, and is summarized in figure 1.

The starting assumption of this model is that AI can automate some fraction of tasks
across different sectors in the economy. AI itself is a combination of a nonrivalrous
idea, “software” (AI algorithms), and a kind of capital, “hardware” (computer chips
like Nvidia GPUs). Software progress follows a canonical ideas production function.
Computer chip hardware, meanwhile, accumulates like any form of capital, augmented
by investment-specific technical change: “hardware quality” is another standard nonri-
valrous idea following an ideas production function. In addition to software and hard-
ware quality, we have a third innovation sector: a “general” research sector creating new
ideas for goods production, as in standard models. Production of new ideas in any of
the three innovation sectors may be performed by some combination of human labor

3



or automated by AI. Finally, goods output likewise may be produced by a combination
of humans or automated by AI.

We then use the insights of this model to illustrate how automation of both research
and production can amplify existing feedback loops or spawn themwhere they did not
exist before. In particular, the model predicts hyperbolic growth will arise under the
simple condition:1

fY + fS

(
1

βS

)
+ fH

(
1

βH

)
+ fA

(
1

α

)(
1

βA

)
> 1 (1)

Here, the subscripts denote sectors: output Y , software S, hardware H , and general
innovation A. The term fi ∈ [0, 1] is the fraction of tasks in each sector that can be
automated by AI. The term βi > 0 is the degree of diminishing returns in each research
sector.2

Thus, the explosion condition (1) says that the economy features hyperbolic growth
if the sum of the strength of feedback loops is greater than unity. In particular, the rele-
vant feedback loops are: (1) the pure economic feedback loop (which will be strength-
ened with fY ); (2) the feedback loops induced through technological and economic
channels as automation accelerates research (the next three terms, fi scaled down by
diminishing returns 1/βi).3

We emphasize that this condition does not pin down an exact growth path or the
timing of a growth explosion. Rather, it specifies the condition that determineswhether
growth will eventually explode. Hence, we think of this condition as a line in the sand:
supposing other parameters are fixed, howmuch automation fi must be achieved to tip
the economy into an explosive growth regime?

Empirical insights. The explosion condition highlights the critical importance ofmea-
surement of the degree of diminishing returns in the software and hardware sectors,
βH and βS . Bloom et al. (2020) estimate that in the economy as a whole, ideas become
sharply harder to find, with βA = 3.1. In comparison, while the hardware sector does
feature the same phenomenon – more and more researchers are required to maintain
the pace of Moore’s Law – the quantitative magnitude is much smaller: βH = 0.2. In-
deed, the hardware sector shows the smallest degree of these diminishing returns of

1For simplicity, the expression here assumes no “parallelization penalty”; (54) generalizes.
2α is the labor share in production of output.
3In the case of general innovation, A, diminishing returns are modulated by the labor share, α.
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Figure 1: Model of AI automation with software & hardware feedback loops

any sector studied!
Estimating the degree of diminishing returns in software research has proven more

challenging and is an important avenue for future research. The best evidence, from
Ho and Whitfill (2025) and Erdil, Besiroglu and Ho (2024), estimates βS ≈ 1. With
this calibration, we can estimate the extent of automation needed to achieve hyperbolic
growth in this model.

Limitations. As noted, these results are derived under the strong assumption of an
elasticity of substitution of unity across tasks (Cobb-Douglas aggregation) to turn off
the issue of bottlenecks. Under this aggregation, output can be driven by explosive
progress in a subset of tasks. This means that automation of some tasks is enough
to kickstart explosive dynamics across the system. The hyperbolic growth threshold
we arrive at is strikingly low. This suggests that one of the most important areas for
additional research is understanding the degree of substitutability between economic
tasks in a world with increasing automation. We discuss additional limitations of the
model developed here in Section 6.

Related literature. Several studies have investigated the possibility of AI and automa-
tion leading to transformative growth. Aghion, Jones and Jones (2019) characterize the
conditions under which a single-sector system capable of recursive self-improvement
exhibits hyperbolic growth. Trammell and Korinek (2025) extend this analysis by em-
bedding such self-improving technologies in a macroeconomic setting where capital
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accumulation and technological progress reinforce each other. Jones (2025) quanti-
tatively studies the role of bottlenecks in preventing explosive growth and Jones and
Tonetti (2025) estimate the size of these bottlenecks historically.

We advance this line of work in three main directions. First, we generalize the
analysis to systems whose progress depends on a network of multiple technologies
with heterogeneous returns to research effort, providing a unified condition for when
growth becomes explosive. Second, we integrate technological heterogeneity with eco-
nomic feedback loops, showing how output–technology complementarities amplify or
dampen the possibility of hyperbolic growth. Third, we use this richer framework to
derive a threshold for automation thatmarks the transition from balanced to hyperbolic
growth and provide quantitative estimates under empirically grounded parameters.

Erdil et al. (2025) make a uniquely rich effort to model the growth implications
of AI using an Integrated Assessment Model. Our simpler framework captures the
same core dynamics—withAI displacing human labor in both research andproduction,
thereby driving growth and accelerating further AI progress—while remaining analyt-
ically tractable. This tractability allows us to characterize the interaction between eco-
nomic and technological feedback loops and to derive conditions under which growth
becomes explosive.

Networked models of technological progress have also been applied to understand
optimal R&D allocations (Liu and Ma, 2024), as well as the sources of heterogeneity
in sectoral productivity growth (Ngai and Samaniego, 2011). These analyses explicitly
rule out explosive growth by imposing constant returns to scale on cross-sector innova-
tion spillovers, which ensures balanced growth in an endogenous growth setting. We
introduce automation into such a model, apply it to the particular setting of software-
and hardware-driven AI progress, as well as study the possibility of explosive growth.

Outline. This paper proceeds as follows. Section 2 develops a set of simple models to
illustrate the core economic forces at work in our setting. Section 3 presents the general
model of semi-endogenous growth with an innovation network. Section 4 introduces
AI-driven automation into the general model. Section 5 presents our simple integrated
AI economy, applying the results from the general model. Section 6 discusses before
concluding.
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2 A sequence of simple models

As is typical in networked settings, our generalmodel is fairly complicated. This section
presents a sequence of simple models to highlight the core economic forces at work in
the general model. We draw out four lessons:

1. Diminishing returns prevent growth explosions.
2. Innovation networks (technological feedback loops) introduce spillovers and offset

diminishing returns.
3. Economic feedback loops also introduce spillovers and offset diminishing returns.
4. Automation introduces new spillovers (or strengthens existing ones).

2.1 Lesson one: Diminishing returns prevent growth explosions

“Let an ultraintelligent machine be defined as a machine that can far surpass all
the intellectual activities of any man however clever. Since the design of machines
is one of these intellectual activities, an ultraintelligent machine could design even
better machines; there would then unquestionably be an ‘intelligence explosion’,
and the intelligence of man would be left far behind.”
— Good (1966), Speculations Concerning the First Ultraintelligent Machine

The simplest possible formalism for I.J. Good’s concept of an intelligence explosion
is Ṡt = St, where S is the level of intelligence or the level of “software productivity”,
and dots indicate time derivatives. This equation says that when the level of intelligence
St is low, the rate of change of intelligence Ṡt is also low; andwhen the level of intelligence
is high, the rate of change of intelligence is also high.

We can generalize this process:

Ṡt = S1−β
t (2)

With this generalization, we can observe that – contra Good (1966) and many since –
there need not be an “explosion” from a recursively self-improving process. In partic-
ular, if β < 0, so that there are increasing returns, then there is a literal mathematical
singularity: St approaches infinity in finite time. On the other hand, if β = 0, the pro-
cess exhibits exponential growth, and if β > 0, so that there are diminishing returns,
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the process is subexponential or even sublinear. This is a simple reminder of the im-
portance of diminishing returns in preventing runaway feedback processes.

Equation 2 is in fact the canonical form of the ideas production function for model-
ing the growth of productivity (abstracting from research inputs for now), and it can
be easily embedded in an economic growth model to think about the relationship be-
tween intelligence explosions and economic explosions. The simplest possible case has
a goods production function as follows, assuming an exogenous bounded path for the
supply of labor Lt:

Yt = StL
α
t (3)

Output is produced with labor input (subject to potentially diminishing returns, α ∈
[0, 1]) augmented by software capabilities.

The simple economy of (2)-(3) clearly features an economic explosion – infinite out-
put Y in finite time – if and only if there is an intelligence explosion, i.e.,

β < 0 (4)

This model is summarized in figure 2.

β

S

YL

Figure 2: Recursive self-improvement explodes if and only if there are no diminishing
returns: β < 0.

2.2 Lesson two: Innovation networks introduce spillovers and offset
diminishing returns

It is well-known that higher quality computer chips are used by AI researchers to write
better algorithms; it is additionally, increasingly the case that those better AI algorithms
are used in turn to help design better chips. “AlphaChip” (Mirhoseini et al., 2021)
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from Google DeepMind is a striking example of this phenomenon. A reinforcement
learning method for designing chip layouts, AlphaChip is reported to have been used
in designing every new generation of Google’s Tensor Processing Unit chip since 2020
and to be responsible for a growing share of the ‘floorplan’ for each generation of chip
(Goldie and Mirhoseini, 2024).

To capture this, we modify the baseline semi-endogenous growth model of (2)-(3)
to introduce a two-sector, networked semi-endogenous growth model. Continue to de-
note S as software productivity, denoting H as hardware quality, and dropping time
subscripts to ease notation,4

Ṡ = S1−βSHϕS (5)
Ḣ = H1−βHSϕH (6)
Y = (SH)1/2Lα (7)

Here, βS now denotes diminishing returns within software (“ideas getting harder to
find”); likewise, βH the same within hardware. Meanwhile ϕS ≥ 0 reflects the techno-
logical spillovers from hardware quality to software improvements, and vice versa for
ϕH . This nests the dynamics of the prior model under ϕS = ϕH = 0, βH = 1.

βS βHϕH

ϕS

S H

YL

Figure 3: Innovation networks introduce spillovers, offsetting diminishing returns.

In this networked example, we now have three feedback loops, which can be seen
by physically tracing all possible “loops” in figure 3:

1. Recursive self-improvement within software, as before, governed by βS .

2. Recursive self-improvement within hardware quality, governed by βH .

3. Spillovers across the innovation network, intermediated via ϕH and ϕS .
4The choice of equal-weighted Cobb-Douglas aggregation of S andH in the goods production func-

tion (7) is not essential.
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The spillovers across the innovation network are summarized by the interactionma-
trix: the matrix collecting the exponents in (5)-(6):1− βS ϕS

ϕH 1− βH


The system can now explode in two ways. First, analogously to the prior single-

sector example, the system explodes if either recursive self-improvement loop is strong
enough on its own, βS < 0 or βH < 0.

Second, the system explodes via the spillover loop if the interaction between the two
loops is strong enough. It turns out that, mathematically, this occurs if the interaction
matrix has an eigenvalue greater thanunity. This generalizes the single-sector condition
that the exponent in the law of motion, 1 − β, is greater than unity. In turn, it can be
shown that the eigenvalue condition holds here if and only if:

βS · βH︸ ︷︷ ︸
diminishing

returns

< ϕS · ϕH︸ ︷︷ ︸
spillovers

(8)

Condition (8) implies that spillovers effectively offset diminishing returns. For ex-
ample, suppose βH = 1, so that the only difference with the model in section 2.1 is the
spillovers. Then the condition (8) for explosive growth becomes simply βS < ϕSϕH .
Thus, explosive growth no longer requires increasing returns, βS < 0, but now can
occur if diminishing returns are mild, βS ∈ [0, ϕSϕH).

2.3 Lesson three: Economic feedback loops introduce spillovers and
offset diminishing returns

In our full AI economymodel, we combine the technological feedback loops from an in-
novation network of section 2.2 with economic feedback loops. An “economic” feedback
loop refers to a feedback loop when higher output is involved.

The most basic economic feedback loop is a Solow model without technological
progress: normalizing the population to one, output is produced as Y = K1−α and
capital accumulates as K̇ = aY − δK, where a is a constant savings rate and δ the de-
preciation rate. Of course, this model features explosive growth if there are increasing
returns to capital in production – α < 0 – or in the language used here, if the economic
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feedback loop is sufficiently strong.
In the rest of this subsection, we illustrate an economic feedback loop using the

canonical single-sector semi-endogenous growth model, with capital instead of labor
in the ideas production function:

Ȧ = A1−β · (κAK)1−γ (9)
Y = A · Lα · (κYK)1−α (10)
K̇ = aY − δK (11)

Here, A is a general productivity term produced from general research in the economy,
replacing the previous S term. (κA is the share of capital used for research; κY ≡ 1−κA

is the share used in production.) This model is summarized in figure 4.

A

Y KL

β

α

1

1− γ

Figure 4: Economic feedback loops effectively offset diminishing returns.

The same logic can be applied as before, with the same condition on the eigenvalues
of the interaction matrix. The condition implies the system explodes if:

β · α︸︷︷︸
diminishing

returns

< (1− γ) · 1︸ ︷︷ ︸
spillovers

(12)

This condition is exactly analogous to (8) and highlights that when higher productivity
A increases output, then if this output in turn can be invested to produce yet further
research advances (γ < 1), then explosive growth is more likely.

Notably, a standard calibration of (12) would imply a lack of explosive growth. Us-
ing β = 3.1 as the extent to which ideas are getting harder to find in the economy as a
whole (Bloom et al., 2020), α = 0.6 as the labor share in production, and 1− γ = 0.1 as
the capital share in R&D for the economy as awhole (Besiroglu, Emery-Xu and Thomp-
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son, 2024), we find that the explosion condition is far from being met. However, as the
next section shows, increasing automation could change this.

2.4 Lesson four: Automation introduces new spillovers

Finally, we come to the role of automation, which is critical to our titular question. We
consider automation in a task-style framework, where as the simplest example tasksXi

are bundled into aggregate output Y via a Cobb-Douglas aggregate:5

Y =
N∏
i=1

X
1/N
i

Individual tasks can be produced either with capital or with labor:

Xi =

Li if not automated
Ki if automated

Suppose only tasks i = 1, ..., I are automated by capital. Then, optimally spreading
inputs equally across tasks, we can write an effective aggregate production function:

Y = L1−fKfξY

where ξY is an unimportant constant, and importantly f is defined tomeasure the share
of automated tasks:

f ≡ I/N

As a result, for our purpose of studying explosive dynamics, automation of tasks can
be understood as increasing the capital share f : shifting production weight from L to K.

Automation of the ideas production function can likewise be microfounded, after
adding labor as a factor of production. We will use fY ∈ [0, 1] to denote the share of
automated tasks in goods production and fA ∈ [0, 1] for the share of automated tasks
in ideas production.

Thus, we can simply take our previous system (9)-(15), and consider changes in the
5This task aggregator rules out bottlenecks by imposing an elasticity of substitution of one across

tasks; section 6 discusses this important assumption.
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capital share in both production functions:

Ȧ = A1−β · (ℓAL)γ(1−fA) · (κAK)(1−γ)+fAγξA (13)
Y = A · (ℓYL)α(1−fY ) · (κYK)(1−α)+fY α ξY (14)
K̇ = aY − δK (15)

Here, fA ∈ [0, 1] is the degree of automation in the software sector, and fY ∈ [0, 1] is the
degree of automation in goods production. (ℓA is the share of labor used for research;
ℓY ≡ 1− ℓA is the share used in production; ξY and ξA are unimportant constants.)

This system, visualized in figure 5, make clear how automation either strengthens
existing feedback loops – or creates new ones which did not exist previously.

A

Y KL

β

α− fY α

1

(1− γ) + fAγ

Figure 5: Automation introduces new feedback loops or strengthens existing ones.

For example, suppose initially capital was not used at all in production of ideas and
no relevant tasks were automated: γ = 1 and fA = 0. Then the system would have no
economic feedback loops: there would be no arrow from K to A, breaking the loop.
If automation fA then begins creeping above zero, this creates an economic feedback
loop.

Alternatively, the effect of automation can be interpreted as directly offsetting di-
minishing returns (since spillovers offset diminishing returns). This can be seen on the
diagram as automation raising the strength of various edges.

The formal condition for a growth explosion is once again exactly analogous to the
previous condition, equation (12), simply with automation-augmented terms:

β · α(1− fY )︸ ︷︷ ︸
diminishing

returns

< (1− γ + fAγ) · 1︸ ︷︷ ︸
spillovers

(16)

Automation of output offsets diminishing returns to capital accumulation; automation
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of ideas here increases spillovers through the economic feedback loop. In section 4, we
will see that automation which is AI-induced also creates spillovers through a technolog-
ical feedback loop.

2.5 Summary

We can now return to the condition of the introduction, (1), to provide some intuition
for its origin. Recall that condition:

fY + fS

(
1

βS

)
+ fH

(
1

βH

)
+ fA

(
1

α

)(
1

βA

)
> 1

Now consider the condition we derived in lesson 4, (16). Our main application sets
the initial capital share in research of zero, which would be equivalent to setting γ = 1.6
Using this, the condition (16) can easily be rewritten as:

fY + fA

(
1

α

)(
1

β

)
> 1

Clearly, this condition matches the first and last terms of the boxed condition (as the
“β” of this formula maps to “βA” in the former). The two missing terms will come
from incorporating a software sector, incorporating a hardware research sector, and
introducing a notion of AI-driven automation.

The rest of the paper. The sequence of four simple models above illustrates the core
economic forces at work. They also show a striking degree of formal mathematical
parallels. We now turn to a general framework that explains the deeper underlying
structure.

3 A general framework for hyperbolic growth

In this section, we present a general framework to think about the ideas introduced in
section 2. We begin in 3.1 by introducing a general innovation network, with spillovers
generating arbitrary possible feedback loops between technologies, to consider the nec-
essary and sufficient conditions for hyperbolic growth from technological feedback

6Setting γ < 1 would only increase the likelihood of a growth explosion.
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loops alone. We then embed this model of networked technological progress into an
economic environment in 3.2, demonstrating economic feedback loops that can be iso-
lated analytically in their contribution balanced or explosive growth. Section 4 intro-
duces AI-driven automation.

3.1 Technological feedback loops

Consider an economywithN different technological sectors. Progress in any one sector,
i ∈ I , benefits from spillovers from other sectors:

Ȧi = viR
λi
i

∏
j∈I

A
ϕi,j

j (17)

where Ai is the level of technology in sector i, Ri = Lγi
i K

1−γi
i is the aggregated capital

and labor research inputs to the sector, and vi is a constant scaling parameter. Here,
since vi is the only constant variable and is ultimately unimportant for analysis, we
drop time subscripts entirely and note that all capitalized variables are growing over
time. There are intratemporal diminishing returns to parallel research input, λi ∈ (0, 1],
and sectoral spillovers, ϕi,j ≥ 0. We define ϕi,i = 1 − βi, where βi captures the degree
of intertemporal diminishing returns to research within a given sector as introduced
in Jones (1995). We impose βi > 0 so ideas are getting harder to find; otherwise the
system necessarily generates explosive growth.7

A balanced growth path for this innovation network occurs if all technologies grow
at a constant rate, Ȧi/Ai = gBGP

Ai
constant. From equation (17), we can see that if a

balanced growth path exists, then:

gBGP
Ai

=
λi

βi

gRi
+

∑
j∈I\i

ϕi,j

βi

gBGP
Aj

(18)

That is, the growth rate of technology i on a BGP equals the growth rate of research
inputs, gRi

, plus a spillover-weighted sumof the growth rate in other sectors j; all scaled
down by the degree to which ideas get harder to find, βi.

It will be useful to define labels for two of the terms of (18), as they will appear
7Although, if N = 1, βi = 0 would be insufficient for explosive growth (Aghion, Jones and Jones,

2019). However, we are generally interested in multi-technology systems where any one sector with
βi = 0would be sufficient for explosive growth.
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repeatedly in our analysis:

ri =
λi

βi

si,j =
ϕi,j

βi

for i ̸= j (19)

The term ri is a sector-specific measure of research productivity, capturing how techno-
logical progress responds to ‘own-sector’ research effort. We also introduce an analo-
gous term spillover term, si,j capturing how technological progress in sector j impacts
technological progress in sector i.

We can simplify this system further by writing it in matrix form. Define the N ×N

technological feedback matrix, FA, as:

FA
i,j =

 si,j, if i ̸= j

0, if i = j
. (20)

From here we state the central mathematical result which we will subsequently ap-
ply to a variety of growth environments:
Proposition 1. Take a (strictly positive) growth system defined by equations for each i ∈ I

Ȧi = viE
ℓi
i A

1−bi
i

∏
j∈I/i

A
pi,j
j

with b > 0 and p ≥ 0, and the (irreducible) matrix F ∈ RN×N
≥0 where Fi,j = pi,j/bi for i ̸= j,

Fi,i = 0 and variables E grow at a constant, exogenous rate gE ∈ RN
≥0. The spectral radius of

F, ρ(F), partitions the growth system into three cases:

1. ρ(F) < 1. The system exhibits balanced growth along the path

gBGPA = ΨrgE (21)

where Ψ = (I− F)−1 ∈ RN×N
≥0 and r = diag(ℓi/bi, . . . , ℓN/bN).

2. ρ(F) = 1. The system growth at any time is bounded by double-exponential growth, and
exponential in the purely endogenous growth case (gE = 0).

3. ρ(F) > 1. The system exhibits hyperbolic growth, with all variables growing to infinity
in finite time.
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Proof. See Appendix A.

This result implies that to understand the conditions that give rise to explosive
growth, we can generally limit our focus to the behavior of the balanced growth path –
or more specifically, whether it exists. In our spillover model, the feedback matrix FA

conveniently provides (i) the balanced growth path via the (technological) Leontief
inverse, ΨA = (I − FA)−1 and (ii) the conditions where the system in equation (17)
exhibits hyperbolic growth. ΨA captures how progress in each sector feeds back into
all other sectors repeatedly along the balanced growth path; while r captures the direct
effect of research inputs within a sector. We can see that entries inΨA will be increasing
with returns to other sector research, si,j , and therefore increasing with spillover terms
ϕi,j and decreasing with the strength of diminishing returns to research βi.

This balanced growth path nests that of the standard semi-endogenous balanced
growth path presented in Jones (1995); setting ϕi,j = 0 (so ΨA = I) for i ̸= j and
allowing research inputs to be proportional to population growth we have the vector
of balanced growth paths

gBGP
A = rn.

Liu and Ma (2024) also note that explosive growth can be inferred directly from
the eigenvalues of the exponent matrix (of ϕ terms) in equation (17). However, the
balanced-growth specification is particularly useful here since empirical estimations of
returns to research effort that we ultimately use to calibrate a threshold from explosive
growth from automation are calculated under the assumption of a balanced growth
path.

In Figure 6 we illustrate hyperbolic and balanced growth in phase diagrams of a
two technology model. From this figure we can see stability of the balanced growth
path—where ĝA, the growth in the growth rate of A, is zero—can be understood as a
crossing condition on the isolines. In this case, the slope of the ĝA1 isoline is s1,2 and is
s−1
1,2 for the ĝA2 isoline.8 Therefore, lines cross whenever s1,2s2,1 > 1. This is the exact
case where the largest eigenvalue of FA exceeds one and there is no well-definedΨA.

Intuitively, in the two-sector example, the explosive growth condition s1,2s2,1 > 1 is
more likelywhen either feedback term s1,2 or s2,1 is large. Recall that the feedback terms
are defined as si,j = ϕi,j/βi, where ϕi,j measures the spillover of sector j to growth in

8One can arrive at this result by taking the time derivative of equation 17 and then setting the growth-
in-growth rates, ĝA1

and ĝA2
, to zero and rearranging λ, ϕ and β terms into s and r terms by their defi-

nitions in equation 19.
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Figure 6: Hyperbolic vs Balanced Growth in a Two Technology Network

(a) Stable, Balanced Growth (s−1
2,1 > s1,2)
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(b) Hyperbolic Growth (s−1
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Note: Along colored lines the growth rate one of the technologies is constant
(i.e., the growth-in-growth rate is zero). When these lines intersect the sys-
tem exhibits stable balanced growth.

sector i, while βi measures the strength of the sector-i “ideas-getting-harder-to-find”
effect. Thus, explosive growth is more likely when either (1) spillovers are large, or (2)
the ideas-getting-harder-to-find effect is small.

3.2 Economic and technological feedback loops

Now we introduce the innovation network of (17) into a broader economic environ-
ment. Specifically, instead of fixing the growth rate of research inputs as above, we
endogenize this growth rate through a lab equipment model with exogenous popula-
tion growth. We also allow technological progress to increase productivity in the final
goods sector. In turn, this will lead to faster capital accumulation and ultimately lead
to faster technological progress.
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Specifically, consider the following system:

Y = ĀK1−α
Y Lα

Y (22)
Ȧi ∝ (K1−γi

i Lγi
i )

λiA1−βi

i

∏
j∈I\i

A
ϕi,j

j (23)

Ā =
∏
i∈I

Aτi
i where

∑
i∈I

τi = 1 (24)

K̇ = aY − δK (25)
K = KY +

∑
i∈I

Ki (26)

L = LY +
∑
i∈I

Li (27)

where, a la Solow, we assume that the share of capital and labor allocated to each tech-
nology and output remain constant and a is a constant savings rate.

To write this in matrix form, define:

FY :=
1

α
[r(1N − γ)]′τ (28)

with (1N − γ) and τ being the column vectors of capital contributions to research and
the technology contributions to total factor productivity.

A balanced growth path in this environment can be characterized as follows.

Corollary 1 (Economic and Technological Feedback). The balanced growth path of tech-
nologies in the system described in equations (22)-(27) is given by

gBGPA = ΨA,Y rn (29)

where ΨA,Y =
(
I − [FA + FY ]

)−1 and FA and FY are the I × I technological and economic
feedback matrices, with FA and r defined above (equations (20) -(21) ).

From this balanced growth definition, we can immediately see that including eco-
nomic, alongside technological, feedback loops necessarily brings the system closer to
the hyperbolic tipping point; since FY is non-negative then FY + FA ≥ FA entry-wise.

Note that entries in FY have a straightforward interpretation. The vector of terms,
r× (1N − γ), mediates the effect of output and hence capital on research inputs; on the
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balanced growth path (with gBGP
Y = gBGP

K ), from equation (23) we can arrive at

gBGP
Ai

= ri(1− γ)gBGP
Y +

∑
j∈I\i

si,jg
BGP
Aj

+ riγin.

Further, the vector of terms 1
α
τ mediates the effect of technological progress on produc-

tion; on the balanced growth path, from equation (22) we can arrive at

gBGP
Y =

1

α
τ · gBGP

A + n.

Therefore, we can observe that entries in the feedback matrix exhibit complementar-
ity: intensifying feedback in one direction of the output-technology loop amplifies the
impact of strengthening feedback in the opposite direction.

In Figure 7 we illustrate in a two-sector example how feedback loops arise (sepa-
rately) out of the output to technology vector (purple) and the technology to output
vector (blue) from FY , as well as the technology spillovers (green) from FA. Labor is
also an input into each of these processes, but since it is non-accumulable and hence
cannot participate in feedback loops we omit it from the figure.

Figure 7: Economic and Technological Feedback in a Two Technology Network

A1 A2

Y

s2,1

τ
1/α

s1,2

τ2/
α

r
1 (1−

γ
1 ) r 2

(1
− γ 2

)

Note: Summarizing entries in ΨA,Y , green lines represent the technology
spillovers, si,j , that make up entries of FA; purple lines represent output-
technology feedbackmediated by the vector r×(1N −γ) fromFY ; blue lines
represent the technology-output feedback mediated by the vector τ × α−1

from FY .

The definition of the Leontief inverse, ΨA,Y , provides a clear decomposition of the
effects of technological and economic feedback loops to inform the balanced growth

20



path of this economy. Further, since this definition of the balanced growth path has an
identical structure to that in the technology-only case, we can similarly apply Proposi-
tion 1:

Corollary 2. Supposing population growth, n, is exogenous, finite, and positive, a balanced
growth path exists for the system of equations in 22 - 27 if det

(
I− [FA + FY ]

)
> 0. Further, if

det
(
I− [FA + FY ]

)
< 0 the system explodes in finite time.

Just as with the balanced growth path under technological feedback loops alone,
we can recover the standard balanced growth path from Jones (1995) ifΨA,Y = I. That
is, (i) there are no technology spillovers, so FA

i,j = 0 for all i and j; and (ii) that no
technology sector can simultaneously contribute to research (so γi < 1 for all i) and
contribute to total factor productivity (so τi = 0 for all i), so FY

i,j = 0 for all i and j.
In thismodelwe assume that savings rates are constant, but arbitrary. Of course, op-

timal savings consumption paths will respond endogenously to increases in the growth
rate. However, such responses would only invalidate the above results if savings were
to decline to zero in response to transformative growth induced by AI. Trammell and
Korinek (2025) presents a simple argument using the Euler equation, illustrating that
in a similar environment, given standard preferences, savings declines ultimately will
not preclude explosive growth. In such aworld, every unit of savings prior to the finite-
time singularity can bring arbitrarily large returns at a future date, hence incentives to
save become increasingly high.

4 AI and automation

The model above demonstrates the conditions for hyperbolic growth independent of
automation. In this section we demonstrate that the networked-lab equipment model
provides an intuitive framework to understand how AI and automation can accelerate
growth: by strengthening pre-existing feedback loops or generating them in places they
did not exist before. To develop this model, we suggest that AI will replace labor in some
fraction of tasks in each research sector. Importantly, AI cognitive labor can accumulate
in a way that human labor cannot; via both technological improvements and capital
accumulation. We will see that by making assumptions on the process of automation
we can calibrate the networked research model introduced above.
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4.1 Automation and AI inputs

Here we adapt the automation framework from Zeira (1998), where labor outputs (be
they from research or final production) are a Cobb-Douglas aggregation in outputs
from tasks in the set, T . In particular, we assume that effective labor working in a sector
i is given by

L̂i = pi
∏
q∈T

X
ξq
i,q where

∑
q∈T

ξq = 1

where

Xi,q =

Li,q if not automated
Ci,q if automated

where Li is human labor and Ci is the human equivalent level of AI deployed on a task
i and pi is a productivity constant. I.e., we set Ci such that one unit of AI deployment
to a task is equivalent to one unit of human labor. Assuming optimal allocation of AI
equivalent labor and human labor (where AI and labor stocks are spread evenly across
tasks), as the number of tasks approach infinity we have effective labor given by

L̂i(Ci, Li) = p̃i(fi)C
fi
i L1−fi

i where p̃i(fi) =
pi

f fi
i (1− fi)1−fi

(30)

where fi ∈ [0, 1] is the fraction of tasks that are automated. Importantly, we treat fi
as an exogenous constant to evaluate the growth implications of a given level of task
automation. Hence, our starting point is downstream of questions related to optimal
automation of output or research tasks, which has received attention elsewhere (Jones,
2025, Acemoglu and Restrepo, 2018).

We separate AI capabilities, Ci, along two kinds of inputs:

• Non-rivalrous: progress in AI has been one of discovery of new, non-rivalrous,
ideas. We assume that these non-rivalrous improvements result in some equiva-
lent increase in AI equivalent labor. AI has emerged out of underlying progress in
technologies such as compute hardware, algorithmic research or large-scale data
collection.

• Rivalrous: the use of AI to complete tasks requires inference compute (compute to
transform model inputs into productive work).
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Weemphasize that choice tomodelAI progress as arising fromboth algorithmicprogress
and from (inference) compute scaling is inspired by the crucial stylized fact that AI
progress has been driven by both algorithmic advances and from increasing compute
inputs (Ho et al., 2024).

In this spirit, we define our sectoral AI inputs as a function of a subset of technology
sectors, Ī ⊆ I ; as well as a specific kind of capital, computing hardware,KH .

Like in the rest of the model, we take the AI index to be a Cobb–Douglas function
of a subset of underlying technologies, multiplied by the number of copies that can be
run, a linear function of the amount of inference compute available in a given sector:

Ci = KH
i ×

∏
j∈Ī

A
σj

j (31)

where we do not necessarily assume that ∑i∈Ī σj = 1 since standard replication argu-
ments for constant returns to scale don’t apply to non-rivalrous technologies, Ai. We
do assume that AI-equivalent labor scales linearly with inference compute.

4.2 Hyperbolic growth: Automated research

Here we demonstrate that we can recover the same structure on balanced growth as the
general technological feedback equation (17) for a baseline semi-endogenous techno-
logical law ofmotionwith automation. Hence, we can apply Proposition 1 to determine
the conditions for hyperbolic growth, in an automated research environment.

We begin by assuming that the only inputs to research are effective labor, combining
both human labor and AI effective labor according to equation (30). Therefore the
technology laws of motion become

Ȧi = νiL̂
λi
i A1−βi

i

∏
j∈I ̸=i

A
ϕi,j

j

= νip̃i(fi)C
fiλi

i L
(1−fi)λi

i A1−βi

i

∏
j∈I ̸=i

A
ϕi,j

j

∝ A1−βi

i︸ ︷︷ ︸
Dim. returns

×[KH
i

fi
L
(1−fi)
i︸ ︷︷ ︸

Riv. inputs

]λi ×
∏
j∈I

A
fiλiσj

j︸ ︷︷ ︸
AI feedback

×
∏

j∈I ̸=i

A
ϕi,j

j︸ ︷︷ ︸
Direct spillovers

(32)

where σj = 0 for j /∈ Ī . As a baseline, we assume that direct technological spillovers
are non-existent (ϕ = 0). In this case, we recover sectoral spillovers through research
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automation; a positive automation shock to a sector that feeds into AI progress accel-
erates research in all other sectors that have any automation. By matching terms we
can calibrate our general network model with parameters we present the calibration in
Table 1.

Table 1: AI-Parameterized R&D Network Model

General Model Input AI-Parameterization Description

βi βi − fiλiσi Diminishing returns (offset)
ϕi,j (for i ̸= j) fiλiσj Automation spillovers
γi fi Non-automated research task share

λi λi Parallelization penalty

Note: This table summarizes how one can re-parameterize the networked
technology model (equation (17)). Blue terms (first three lines) represent
additional terms arising from technological feedback loops. The final line
has the same interpretation as in the general model.

From this calibration, we make several observations:

• Diminishing returns to researchwithin a sector, βi, are directly offset by the ability
for AI to contribute to research in that sector. Introducing automated research is
isomorphic to offsetting diminishing returns.

• For progress in j to spillover into progress in i, we require both automation in i

(fi > 0) and j to be relevant to AI progress (σj > 0). Therefore, a ‘bilateral’
feedback loop exists between i and j if both f and σ are greater than zero for both
i and j. An ‘indirect’ feedback loop exists if there is a chain of technologies with
positive f and σ such that progress in one sector eventually reinforces itself after
accelerating technological progress in one sector, which subsequently accelerates
in another sector and so on until the original sector is accelerated.

• If wewere to deviate from our baseline assumption of no non-AI spillovers (ϕi,j >

0), those spillovers would just be additive to automation spillovers: ϕ̂i,j = ϕi,j +

fiλiσj . In this case automation amplifies existing spillovers.

24



In summary, starting from a baseline of no sectoral spillovers and no contribution
from lab-equipment, introducing research automation allowsus to recover a networked,
technological lawofmotion that conforms to a lab-equipment specificationwith spillovers.
This means that after research automation, explosive conditions can emerge out of a
model that precluded this possibility.

Substituting our recovered parameters into the balanced growth path described by
equation (21) and denoting automation-adjusted parameters with hats, we have

gBGP
A = Ψ̂Ar̂ĝR

where

ĝR,i = fi× n +(1− fi)× gH,i

r̂i :=
λi

βi−fiλiσi

Ψ̂A = (I− F̂A)
−1

F̂A
i,j =

 ŝi,j :=
fiλiσj

βi−fiλiσi
for i ̸= j

0 if i = j

and black terms in r̂ and ĝR are those present in the baseline Jones (1995) model and
while the blue terms in r̂, ŝ and ĝR are those that enter through automated research
channels.

We can apply Proposition 1 directly to this system. Yielding the result:

Corollary 3. The automation-calibrated technology system (equation (32)) explodes in finite
time iff ∑

i∈I

rifiσi > 1 .

Where this result comes directly from calculating det(I− F̂A) and rearranging.

4.3 Hyperbolic growth: Automated production and research

Now we extend the AI-induced feedback loops captured in equation (32) to a more
realistic setting where AI can additionally automate some tasks in the production of
goods, as well as allowing automated technological progress increase total factor pro-
ductivity.
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Y = ĀKY 1−α
L̂α
Y (33)

Ā =
∏
i∈I

Aτi
i where

∑
i∈I

τi = 1 (34)

Ȧi ∝ L̂i
λi
A1−βi

i (35)
L̂i ∝ L1−fi

i Cfi
i where Ci = KH

i ×
∏
j∈I

A
σj

j (36)

K̇Y = aY Y − δYK
Y (37)

K̇H = aHY − δHK
H (38)

KH = KH
Y +

∑
i∈I

KH
i̇

(39)

L = LY +
∑
i∈I

Li̇ (40)

where aH + aY ≤ 1 and allocations of hardware and labour across research sectors is
constant over time. Solving for the balanced growth path, we have

gBGP
A = Ψ̂A,Y r̂n (41)

where

Ψ̂A,Y = (I− [F̂A + F̂Y ])−1 (42)
F̂Y := [r̂⊙ f ]′︸ ︷︷ ︸

dgBGP
A /dgBGP

Y from 35

1

1− fY
[
1

α
τ + fY σ]︸ ︷︷ ︸

dgBGP
Y /dgBGP

A from 33

(43)

and r̂ and F̂A are defined as above.
In Table 2 we present how the core dynamics of the general R&D and production

network model described by equations (22)-(27) can be calibrated to the automated
economy model in equations (33) - (40) by adjusting relevant parameters. From this,
we can see that introducing automation into the production side of the model (in addi-
tion to the technological side) is equivalent to: decreasing the labor share of production
by a factor of (1− fY ); and increasing the contributions of each technology to the pro-
duction of final goods by fY σ.

Applying Proposition 1 to the balanced growth condition from equation (72), we
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Table 2: AI-Parameterized R&D and Production Network Model

General Model Input AI-Parameterization Description

1− α 1− α(1− fY ) Capital share of output
τi τi + σifY Technological contributions to output
βi βi − fiλiσi Diminishing returns (offset)
ϕi,j (for i ̸= j) fiλiσj Automation spillovers
γi fi Non-automated research task share

λi λi Parallelization penalty

Note: This table summarizes how one can re-parameterize the general model
(equations (22)-(27)) to account changes in the parameter space due to au-
tomation. Purple terms (first two rows) represent additional terms arising
from economic feedback loops while blue terms (middle three rows) repre-
sent additional terms arising from technological feedback loops. The final
row has the same interpretation as in the general model.

have the following result:

Corollary 4. With economic feedback loops, the automation-calibrated growth model (described
in equations (33) - (40)) explodes in finite time iff

fY +
∑
i∈I

rifi(
τi
α
+ σi) > 1 . (44)

Note, in Appendix B we derive the equivalent condition for the case of a fixed factor
entering output, so output exhibits diminishing returns to capital and labor.

5 A calibrated application: Hyperbolic growth under
AI-driven automation

Above we have introduced a general model of networked growth, where motivated
these models with application to the case of automation of both final goods production
and research. Importantly, the balanced and hyperbolic growth conditions in section
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4 are stated in terms of parameters that can be directly calibrated, based on historical
evidence on diminishing returns in software and hardware research together with the
labor share of output.

5.1 Simple integrated AI-economy

Here we integrate a simple model of AI progress within an economic environment. As
in previous sections, we assume that AI contributes to cognitive labor, replacing hu-
man labor in some fraction of tasks in each sector. The central force continues to be that
AI progress stems from both better algorithms and better computing hardware. Im-
proved computing hardware allows us to run more computations for the same amount
of capital investment, while improved algorithms make AI more capable of completing
relevant tasks.

We deliberately omit a number of additional components of the training process
here to emphasize key feedback loops. For example, our model exclusively focuses on
inferencewithout modeling the relationship between training investment and inference
capabilities. Erdil et al. (2025) considers a much richer AI-economic model, though
such a framework makes it impossible to cleanly isolate the key feedback loops of in-
terest.

We present the equations of the model before describing in words:

Y = AL̂α
YK

Y 1−α (45)
L̂i ∝ L1−fi

i Cfi
i where Ci = KH

i S (46)
Ṡ ∝ L̂λS

Ṡ
S1−βS (47)

Ḣ ∝ L̂λH

Ḣ
H1−βH (48)

Ȧ ∝ L̂λA

Ȧ
A1−βA (49)

K̇H = aHHY − δHK
H (50)

K̇Y = aY Y − δYK
Y (51)

KH = KH
Y +KH

Ḣ
+KH

Ṡ
+KH

Ȧ
(52)

L = LY + LḢ + LṠ + LȦ (53)

In this environment, we have three independent technological processes (general TFP
A, software S, and hardware qualityH) which amplify feedback loops. Feedback from
output Y to effective labor L̂ through accumulation of computeKH supports the infer-
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ence ofAImodels. This channel fromoutput to compute is amplified through hardware
quality progress; we assume hardware progress means more inference compute can be
purchased for the same amount price over time in (50). The capacity of effective labor
to contribute to both research and production is amplified through software progress
S, which makes compute more effective at completing economic tasks. Here we define
software in terms of productivity units of human labor and that doubling the software
‘level’ means that software can produce double the output on a specific task given the
same amount of inference compute. The role of capital is unchanged from standard
models, and labor grows exogenously.

Just as in Section 4.3, we can find the conditions for balanced and explosive growth
by recognizing from equations (50) and (51) that a balanced growth path requires
gKY = gKH − gH = gY . Then we can use the equations for output and effective labor to
solve for the balanced growth path of technologies as a function of fundamentals of the
model. This is the same balanced growth condition for AI capabilities as in the general
model from Section 4.3. Further, note that we only have one technology – TFP – feeding
directly into increasing output productivity.

Therefore, we can see that the system described in equations (47)-(53) is a three
technology version of the general model from equations (33)-(40), where: technolog-
ical contributions to output are dictated by τz = τh = 0 and τA = 1; and technological
contributions to AI progress are dictated by σz = σh = 1 and σA = 0.9

Given that the AI-economic model developed here is a specific case of the general
model, we can simply calibrate Corollary 4 to derive the hyperbolic growth condition:

Corollary 5. TheAI-economicmodel (described in equations (45)-(53)) explodes in finite time
iff

fY + fSrS + fHrH + fA
rA
α

> 1 (54)

5.2 Calibration

We now turn to calibrating the relevant terms from equation (54). In Table 3 we re-
port estimates of research productivity in software, hardware and aggregate TFP. Both
software and (in particular) hardware research are significantly more productive than

9The only difference between this calibrated model and the general model from Section 4.3 is that
one of the technologies – hardware quality – scales compute accumulation rather than AI capabilities
directly. Ultimately this does not affect the balanced growth path calculation.
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aggregate TFP.

Table 3: Parameter estimates

Term Parameter Estimate Source

Labor share α 0.6
Returns to research (software) rS ∼ 1 Erdil, Besiroglu and Ho (2024)
Returns to research (hardware) rH 5 Bloom et al. (2020)
Returns to research (TFP) rA 0.32 Bloom et al. (2020)

We postpone discussion of the limitations of this calibration to Section 5.3.
Table 4 presents the calibrated explosion conditions, i.e. from calibrating (54) using

table 3. The first row presents the condition if the software sector is the only sector
to be (partially) automated; the second, if only hardware; and so on, with different
variations.

A key takeaway of the exercise is that automating hardware research – increasing fH
– has the highest impact of automation across any sector, since the returns to research
are so high in that sector, rH = 5. Automating one hardware research task offers about
the same increase in the distance to the threshold as five tasks in software or final goods
production and the same as ten tasks in the general TFP sector.

Further, we can see that introducing a 10% fixed factor so that output is diminishing
returns to scale in capital and effective labor, there is only a mild effect on the threshold
since this effect does not pass through the hardware or software automation channels.10
Appendix B provides the analytical balanced and hyperbolic growth conditions with a
fixed factor.

Table 5 first solves for how much automation is required to achieve a doubling of
output growth on the balanced growth path, assuming an equal level of automation in
each sector under consideration, if feasible. Column 2, meanwhile, solves for the level
of automation required to achieve the hyperbolic growth threshold, under the same
assumption of equal automation across sectors.

We can see that in the full model, the automation required to double the balanced
growth path is about three quarters of the automation necessary to achieve fully ex-

10Fixed factors can be introduced in the above model by redefining output shares on labor and capital
according to αL = 0.9× α and αK = 0.9× (1− α).
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Table 4: Applying historical estimates of research productivity to singularity conditions

Sectors with Automation Calibrated Explosion Condition

S ∼ 1fS > 1

H 5fh > 1

S,H ∼ 1fS + 5fh > 1

H, Y 5fH + fY > 1

S, Y ∼ 1fH + fY > 1

S, H, Y ∼ 1fS + 5fh + fY > 1

S, H, A, Y ∼ 1fS + 5fh + 0.53fA + fY > 1

S, H, A, Y (10% fixed factor) ∼ 1fz + 5fh + 0.45fA + 0.86fY > 1

Note: Estimates of historical returns to research effort are taken from Bloom
et al. (2020) for total factor productivity and hardware, and from Erdil, Be-
siroglu and Ho (2024) for software. Here, f terms can be calibrated to the
fraction of tasks that can be automated in research sectors; software (S),
hardware (H), and general technology A.

plosive growth. That is, the balanced growth path is initially very slow to respond to
changes in automation, and then changes incredibly quickly. This is the result of the
multiplication of spillovers through the Leontief inverse.

These quantitative results underscore two points. First is the importance of ampli-
fication of feedback loops. Under the simple model developed above, higher levels of
automation – dialing up feedback loops – accumulates into rapid changes in the growth
path quickly. Second is the emphasis that these are changes in the asymptotic balanced
growth path. In reality it may take some time to converge to such a path and further,
even under a hyperbolic growth path it may still take significant time to actually see
radical changes in growth rates; hyperbolic growth does not necessarily imply trans-
formative growth in the short run. One can see this intuitively by recognizing that
from the view point of the entire human history the current 2% annual growth is part
of a long-run super-exponential trend.11

11Hanson (2000) makes this point through a theory-free projection of growth by fitting historical
growth rates to a series of increasing exponential functions until 1998 which predicted growth rates
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Table 5: Automation for Hyperbolic vs Balanced Growth

Automated Factors
Automation Threshold

2× gBGP
Y Hyperbolic

S – ∼ 100%

H – 20%

S,H – 17%

H, Y 12% 17%

S, Y 16% 50%

S, H, Y 11% 14%

S, H, A, Y 8% 13%

S, H, A, Y (10% fixed factor) 9% 14%

Note: Here we assume that f = fS = fH = fA = fY . In the middle column
we solve for the f such that the balanced growth path doubles relative to no
automation. In the right column we solve for the f such that the conditions
from Table 4 are satisfied. The first three balanced growth rows are empty
since these are technology-only automation scenarios.

5.3 Calibration limitations

Here we offer an illustrative calibration of the explosion threshold based on historical
estimates of research productivity in different sectors. However, there are a number of
reasons why these estimates might be inappropriate for this model.

First, is that returns to research effort in software from Erdil, Besiroglu and Ho
(2024) have been estimated in software domains other than frontier AI research. Specif-
ically, these estimates come from chess engines and computer vision. Estimating rS

directly from the rate of progress at frontier AI labs is difficult not just because of chal-
lenges associated with estimating research inputs, but also because rS is estimated as
returns to research along the balanced growth path. Given the boom in progress in AI
it is impossible to tell if we are anywhere close to balanced growth software research.
Ho andWhitfill (2025) make some attempt to make this calculation directly, finding rS

larger than 20% by 2040.
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in the range of 1.2 - 1.8. Though, given limitations in this approach, we rely on relatively
conservative estimates from Erdil, Besiroglu and Ho (2024).

Second, we assume that these parameters are foundational to the knowledge dis-
covery process, rather than the human knowledge discovery process. For example, that
diminishing returns to research (β) or parallelization of research (λ) are independent
ofwhether it is humans ofAI completing that scientific research. Trammell andKorinek
(2025) suggest reasons why both of these parameters may be different under AI R&D.
For example, as identified by Ekerdt and Wu (2025), increasing the researcher share
of population may result in declines in returns to research effort as the average quality
of researcher declines; in the case of AI we might expect constant effective researcher
quality, increasing r for AI researchers relative to human researchers.

Third, we take estimates fromBloomet al. (2020) andErdil, Besiroglu andHo (2024)
as given. Specifically, the estimate of rA from Bloom et al. (2020) is an aggregate esti-
mate of returns to research across the whole economy. However, we should expect that
the research that has contributed to hardware and software progress have in fact con-
tributed to aggregate TFP. Since we separate out software and hardware progress from
TFP we should also adjust rA to be the returns to research in TFP, net of software and
hardware sectors. We do not have a good estimate of the share of aggregate technolog-
ical progress that has come from AI software and hardware research (τS and τH terms
from above) hence we just assume these are small and calibrate rA as the aggregate
economy estimate.

6 Discussion

The above analysis employs a simple model to derive a critical threshold for the au-
tomation of tasks: once this threshold is crossed, intelligence and output are projected
to grow super-exponentially, ultimately reaching infinity within finite time. Crucially,
the possibility of a singularity hinges on two assumptions: constant research produc-
tivity up to the singularity and correctly specified research production functions, which
may be satisfied soon, even though they may fail to hold in the long run.

Regarding constant research productivity, our findings indicate that automating
hardware quality research is a significant contributor to meeting the explosion con-
dition, largely due to the extreme pace of Moore’s law over the past half-century. How-
ever, physical constraints on increasing transistor density in chips that support AI train-
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ing and inferencemay limit this progress. Current state-of-the-art chips already feature
transistors as small as 2 nanometers, which may approach the boundaries of physical
feasibility. Such challenges have fostered skepticism regarding the continued validity
of Moore’s law, which has historically predicted consistent advancements in transistor
density (Leiserson et al., 2020).

Regarding the specification of the production function, we have assumed that the
production factors – human labor and AI cognitive labor – are substitutes. In the short
run, this assumption may hold; for instance, AI is already capable of performing cod-
ing tasks semi-autonomously, replacing humanprogrammers. However, as automation
advances, human and AI cognitive labor may appear complementary over some time
periods. For example, while AI may excel in chip architecture, manufacturing, and
testing, it might remain unable to conduct the physical experiments necessary for chip
design before sufficiently advanced robots are developed, thereby relying on human
researchers. Such considerations receive substantial consideration in Jones (2025). In
such cases, the pace of hardware improvement could be constrained by the availability
of human experimenters. By alleviating reliance on this scarce resource, these efforts
could delay ormitigate the stalling of progress caused by bottlenecks. While such adap-
tive responses may not eliminate bottlenecks entirely, they could extend the period of
rapid advancements before fundamental constraints take hold.

Although limitations are likely to emerge in the long run, we argue that assuming
(roughly) constant research productivity and substitutable labor provides a reasonable
approximation of the production process in the short term. Thus, a more realistic inter-
pretation of the explosion conditions derived above is that they signify a threshold for
temporary super-exponential growth take-off in economic output and AI capabilities.
Crucially, this super-exponential growth is driven not by resource reallocation within
the economy but by changes in the fundamental drivers of economic and technological
progress.

7 Conclusion

This paper develops a framework for understanding how advances in artificial intelli-
gence could fundamentally transform economic growth dynamics. By modeling the
interconnected roles of hardware, software, and general technological progress, we
show that automation of research and development activities could generate powerful
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feedback effects leading to rapid growth acceleration. Our calibration using histori-
cal estimates of research productivity suggests that these effects could be substantial,
particularly through the automation of semiconductor research.

These findings have important implications for economic policymakers. First, they
suggest that standard growth models may need significant revision to account for the
potential of recursive technological progress. Traditional frameworks that treat techno-
logical advancement as an exogenous or smoothly evolving processmay not capture the
possibility of sudden acceleration in growth rates driven by AI automation of research
activities.

Second, our results highlight the strategic importance of semiconductor research
and development. The high historical productivity of hardware research, combined
with growing automation capabilities in chip design, suggests that this sector could
play a crucial role in determining the pace of overall technological progress. This raises
important questions about both themarket concentration and geographic concentration
of semiconductor research and production capabilities (Korinek and Vipra, 2025).

Third, our analysis suggests that monitoring automation levels in research and de-
velopment activities may be as important as tracking traditional macroeconomic indi-
cators. The extent of automation in key research sectors could serve as an earlywarning
system for potential growth acceleration.

Several promising directions for future research emerge from our analysis. Re-
searchers could develop systematic metrics to measure automation levels across dif-
ferent research domains. Empirical work might test for the presence and strength of
feedback loops between AI advances and technological progress, particularly in semi-
conductor and software research. Future studies could investigate the degree of com-
plementarity between human andAI researchers in different activities. Analysis of how
existing concentrations of AI and semiconductor research capabilities might influence
regional growth patternswould be valuable. Finally, work is needed to better character-
ize the physical, computational, and economic constraints that might prevent growth
acceleration.

Understanding these dynamics is crucial for economists and economic policymak-
ers. If AI progress can indeed generate self-reinforcing technological acceleration, this
has profound implications for economic planning, research funding priorities, and in-
ternational economic coordination. While our analysis suggests this scenario is plausi-
ble given historical patterns of research productivity, much work remains to be done in
understanding how these dynamics might unfold in practice.
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A Deriving conditions for hyperbolic growth

Proof of Proposition 1. First we divide equation (17) byAi to get technology growth rates
and then take the logs and time derivative to get the rate of change in growth rates given
by the vector

ġA = diag(gA)[(S−B)gA + diag(ℓ)gE]

where Si,j = pi,j for i ̸= j and zero for diagonal elements, and B = diag(b1, b2, . . . , bN).
We define the ‘exponent matrix’, Ω := S − B. Therefore, We can relate the (balanced
growth path) spillovermatrix,F and the exponentmatrixΩ according toΩ = B(F−I).
Further, let u ≫ 0 be the Perron–Frobenius right eigenvector of F, Fu = ρ(F)u, and set
µ := ρ(F)− 1. Then

(F− I)u = µu, Ωu = B(F− I)u = µBu (≫ 0).

Further, we define the scalars

h̄(t) :=
gAī

(t)

uī

(> 0), where ī = argmax
i

gA,i(t)

ui

h(t) :=
gAi

(t)

ui

(> 0), where i = argmin
i

gA,i(t)

ui

Proving ρ(F) > 1 =⇒ hyperbolic growth. Suppose ρ(F) > 1 so µ > 0. Take the
rate of change in the growth rate of Ai at a specific time t.

ġA,i(t) = gA,i(t)(ΩgA + diag(ℓ)gE)i (55)
≥ gA,i(t)(ΩgA)i (56)
= gA,i(t)(

∑
j ̸=i

Ωj,igA,j +Ωi,igA,i(t)) (57)

≥ gA,̄i(t)(h(t)
∑
j ̸=i

Ωj,iuj +Ωi,igA,i(t)) (58)

D = h(t)2ui(Ωu)i (59)

where 58 comes from the fact that by definition gA,j(t) ≥ h(t)uj as well as that Ωj,i ≥ 0

and 59 comes from the fact that this holds with equality when j = i. Next, since ḣ(t) =
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ġA,i(t)/ui then we have

ḣ(t) ≥ h(t)2

uī

(Ωu)ī (60)

=
h(t)2

uī

(µBu)ī (61)

= h(t)2µbiui (62)

which implies h(t) grows hyperbolically, which in turn implies that gAi
grows hyper-

bolically for all i by definition of h(t), which implies Ai grows hyperbolically ∀i.
Next, proving the ρ(F ) ≤ 1 =⇒ no hyperbolic growth. Assuming ρ(F) ≤ 1 gives

µ ≤ 0. Following a similar procedure as above, we have

ġA,̄i = gA,̄i(t)(ΩgA(t) + diag(ℓ)gE)ī (63)
= gA,̄i(t)(ΩgA)ī + gA,̄i(t)ℓigE (64)
= gA,̄i(t)(

∑
j ̸=ī

Ωī,jgA,j +Ωī,̄igA,̄i) + gA,̄i(t)ℓīgE (65)

≤ gA,̄i(t)(
∑
j ̸=ī

Ωī,jh̄(t)uj +Ωī,̄igA,̄i) + gA,̄i(t)ℓīgE (66)

= gA,̄i(t)h̄(t)(
∑
j ̸=ī

Ωī,juj +Ωī,̄iuī) + h̄(t)uīλigE (67)

= h̄(t)2uī(Ωu)ī + h̄(t)uīℓīgE (68)
= h̄(t)2uīµ(Bu)ī + h̄(t)uīℓīgE (69)

and since ˙̄h(t)uī = ġA,̄i then we can upper bound by the logistic differential equation

˙̄h(t) ≤ h̄(t)2µβīuī + h̄(t)uīℓīgR (70)

and since µ < 0 the quadratic part of the expression dominates as h̄ grows so h̄(t)

remains finite for all t. Further in the case of µ = 0 the inequality reduces to ˙̄h(t) ≤
h̄(t)ℓīgE , yielding at most exponential growth in h̄. Finally, we know that no explosive
growth in h̄ implies there is no explosive growth in gA,i for all i ∈ I (nor in Ai).

Finally we prove fully endogenous balanced growth with ρ(F) = 1 and gE = 0. In
this case, we have the the motion of technology growth balanced growth path gBGP

A =

FgBGP
A . From above we have that Fu = ρ(F)u and when ρ(F) = 1 then u = Fu. Finally,

if u = Fu and gBGP
A = FgBGP

A then we require gBGP
A ∝ u.
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B Balanced and hyperbolic growth with a fixed factor

Here we take the growth model from Section 4.3, but allow for the inclusion of a fixed
factor, M , into output. Where output is constant returns to scale in capital, labor and
the fixed factor

Y = ĀKαK
Y L̂αL

Y M1−αK−αL . (71)

We maintain equations (35) - (40) to describe law of motion of technology, hardware,
capital and resource constraints.

Solving for the balanced growth path under the assumption that output is constant
returns to scale in capital and labor we have

gBGP
A = Ψ̂A,Y ×

(
r̂× 1n − f − αK(1n − f)− αL(1n × fY − f)

1− αK − αLfY

)
× n (72)

where

Ψ̂A,Y = (I− [F̂A + F̂Y ])−1 (73)
F̂Y := [r̂⊙ f ]′︸ ︷︷ ︸

dgBGP
A /dgBGP

Y from tech L.O.M

× αL

1− αK − αLfY
× [

1

αL

τ + fY σ]︸ ︷︷ ︸
dgBGP

Y /dgBGP
A from 71

(74)

and r̂ and F̂A are defined as in Section 4.2.
Then, deriving the explosive growth condition, we get

Corollary 6. The automation-calibrated growth model with a fixed factor (described in equa-
tions (71) and (35) - (40)) explodes in finite time iff

αL

1− αK

fY +
∑
i∈I

firi(
τi

1− αK

+ σi) > 1 (75)
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