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[{] . . .
We have set internal goals of having an automated Al research intern by
September of 2026 ... and a true automated Al researcher by March of 2028.”

Sam Altman, Oct 2025
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Lesson 3: economic feedback loops create spillovers across sectors,
offsetting diminishing returns
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The canonical semi-endogenous growth model

Ay = AT (LN oK) (e
Ye = A ( Le)* ( Ke)”
kt =skY: — 5Kt

Best guess calibration:
» ¢ = —3.4 (Bloom et al 2020) o > 0X
» 3 = 0.4 (capital share in production) B > 1X
» \ = 0.1(capital share in R&D) A+ +8-(0+9)B+1 > 1X
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1. Building blocks of the model

Lesson 4: automation offsets diminishing returns
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Takeaways:

Where are the feedback loops?
How strong are the diminishing returns?

How strong are the technological spillovers?

BN oS

What are the accumulable factors and how strong are the economic feedback
loops?

4. Automation offsets diminishing returns
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1. Building blocks of the model

Lesson 6 (empirical): diminishing returns are low in software/hardware
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Lesson 6 (empirical): diminishing returns are much lower in software/hardware

1. Diminishing returns in general economy (Bloom et al 2020): ¢ = —3
2. Diminishing returns in hardware (Bloom et al 2020): ¢ = —0.2
3. Diminishing returns in software (Erdil et al 2024; Ho and Whitfill 2025): ¢ = —1
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Canonical semi-endogenous growth model,

1. Automation of labor with “Al”

2. Al = software - hardware - hardware quality
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The software-hardware model of Al

Al substituting for labor:

Al=7z= S . C
~— ~—
software hardware
= S . c-h
~— ~—~

software hardware

» Software: “algorithmic efficiency”
» Hardware: computer hardware (“compute”)

- Hardware quantity: ¢, “number of computer chips”
- Hardware quality: h, “how many calculations (FLOPs) per chip”

15
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Hardware accumulates: just another form of capital

Ct = hescYr — 0cCe

Software is like ideas: better software allows for faster software progress

st _ ( Lt))\552+¢5

Hardware quality is like ideas and investment-specific technical change: better
hardware quality allows for faster accumulation of effective hardware

[a la Greenwood-Hercowitz-Krusell]

h _ ( Lt))\h h2+¢h

A:Al= S . c-h
=~

software hardware
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Al replaces human labor in tasks

Automation by Al: Al Al replaces human labor in some fraction of economic tasks,
fx, in sector Xx.

Labor in sector X: (without automation)
Lyt = (Lt
Effective labor in sector X: (with automation)

Itx,t = ( Lt)1_fx 'Zx.zfx
fx
= (L) St - Cxt-ht

N ——
software hardware

Note: effective labor accumulates
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The software-hardware model: equations

Output:

Accumulable factors:

Ideas:

Al automation:

Ye = AdLg K7

kt = SKYt = 5/<Kt
Ct = htSCYt — 0cCt

A = DAl
5 = Dissites

A W N
hy = ththt L

Ly = Ll,_tfx (St Cxt -
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Total Factor Productivity <¢s)
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Strength of feedback increasing with all exponents



Explosion condition

Simplify the problem by assuming complete depreciation. Substituting in
effective labor expressions and removing non-accumulable factors

fsAs
St O(st/\Sq fya B+1+¢Shf5>\51 fya ﬁAq —fya—B

htocsfh hi= fya ﬁhfh I fva il +¢hA1 fya 3

t

farA
AtO(SfA A7 fya ﬁth A7 fya ’BA1 fva 5+ 1+¢a
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Explosion condition

Applying explosion proposition yields explosion threshold:

1
1-8

o
fara + mf\/ +fsrs +furn > 1

r factor: for x € {A, S, h},
Ax

X

I'x

» Intuition: in canonical model, g4 = ra - population growth

20
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Calibrating parameters

Explosion condition: 0.5f4 + fy + fs + 5f, > 1

Term Parameter ‘ Estimate Source
Labor share a=1-0 0.6 =
TFP r-factor I 0.32 Bloom et al (2020)
Hardware r-factor r, (Moore’s law) 5 Bloom et al (2020)
Software r-factor  rs ~1 Erdil et al (2024)

& Ho and Whitfill (2025)

Interpretation: Software and hardware have much lower diminishing returns to

research than the rest of the economy = if software/hardware grow as share
of economy, large growth effects
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What we do not speak to

1. No bottlenecks (e.g. compute, data)

o » W N

» Cobb-Douglas technology = one thing can always substitute for another

>

>

v

v
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. What about “non-explosive” growth accelerations?
. Quality of parameter value estimates

. Endogenous automation

. More:

Endogenous allocation rules

Decentralized allocation: roles of industrial organization + externalities
Learning by doing

Capital adjustment costs

Time to build
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How much automation is necessary for a growth explosion?

Automation Threshold
Automated Factors -
2 X gy ‘

S —

H —

S, H -

H, Y 12%

S, Y 16%

S, H, Y 1%

S, H, A Y 8%

S, H, A, Y (10% fixed factor) 9%




How much automation is necessary for a growth explosion?

Automated Factors

Automation Threshold
2 X QEGP ‘ o0 X gBGP (Hyperbolic)

nh - O

T
N[

I T T < <

v unn v
> > <

Y
Y

(10% fixed factor)

12%
16%
1%
8%
9%
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How much automation is necessary for a growth explosion? D D

Automated Factors

Automation Threshold
2 X QEGP ‘ o0 X gBGP (Hyperbolic)

nh - O

T
5

w v non
I T I <<

> > <

Y
Y

(10% fixed factor)

12%
16%
1%
8%
9%

~ 100%
20%
17%
17%
50%
14%
13%
14%
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Conclusion: “Why wasn’'t automating agriculture enough for a growth explo-
sion?”

Tractors — more food — more people — better tractors — - -
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1. Maybe it was? Our condition speaks to ‘are we on track’ for a growth explosion

24



Conclusion: “Why wasn’t automating agriculture enough for a growth explo-
sion?”

Tractors — more food — more people — better tractors — - --

1. Maybe it was? Our condition speaks to ‘are we on track’ for a growth explosion

2. ‘Diminishing returns’ is one reason;

24



Conclusion: “Why wasn’t automating agriculture enough for a growth explo-
sion?”

Tractors — more food — more people — better tractors — - - -
1. Maybe it was? Our condition speaks to ‘are we on track’ for a growth explosion

2. ‘Diminishing returns’ is one reason; diminishing returns are less strong in
hardware and software

3. Bottlenecks or other limits: we do not speak to all limits

24



Thank you!



Appendix



On bottlenecks
Cobb-Douglas: with o > 0

Y — LozK'lfa

Fix L, send K — oo = Y — 0.

Potential bottlenecks:

» Compute bottlenecking algorithmic
progress

» Algorithmic progress bottlenecking
compute

» Energy bottlenecking everything
» Data bottlenecking everything

CES with complements: with ¢ < 0

Y= [L¢+K¢]W

FixL,send K —o0c0o=—=Y=1L

Potential reasons to think bottlenecks
will be less of an issue:
» 2x efficient algorithims = 2x as
many experiments
» Aum and Shin (2024): software and
labor are substitutes not
complements



Could ¢ be falling over time? Doesn’t appear to be for Moore’s Law

Effective number of

Growth rate

A, /Ay (left scale)
35% —

0% I T T T I I T I
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

— 20

researchers (right scale) — 15

— 10

L/6 | 90UIS 8sealoul J0)oe



Multisector semi-endogenous growth model

Standard one-sector model:
» |dea production functions:
Ar = L2ATT?

» BGP:
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" s; exogenous and constant (“Solow-style”). It can be shown, though, that optimally s; /s, is
constant under Cobb-Douglas aggregation.
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Multisector semi-endogenous growth model

Two-sector model:
» Aggregate TFP: Ay = AT/ A}

» |dea production functions:*

Standard one-sector model:

» |dea production functions:
: 1t
e = LA = (i) A7

» BGP:

- _Z{ —A

» BGP:

Comparative static: Suppose —¢; > —¢,. Increase o,. Obviously g, 1

" s; exogenous and constant (“Solow-style”). It can be shown, though, that optimally s; /s, is
constant under Cobb-Douglas aggregation.
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